A&C_task 1.5

Albert Cheung

Tasks

  1. 完善task 1.4 中的作业。上一次的基本内容如下:

共享文件中所有A_B格式的TH1D直方图(A:0-191; B:0-5)为1152个320微米厚硅微条探测器对宇宙线粒子的响应(可以认为相同的输入),选用合适的函数拟合,并计算不同探测器的增益系数(使不同探测器对相同输入实现相同的输出幅度)

  1. 了解泊松过程、泊松分布的性质和应用。例如泊松分布其他分布的关系、误差、对计算效率时误差的影响(数据处理中常用到一个直方图的数据比上另外一个直方图用来计算效率)。

One Possible Solution

Task 1

Poisson分布和Poisson过程是统计学的基本概念。首先对这两个过程做一个基础的简单阐述。

Poisson 过程

Poisson过程是描述一个稀疏、随机事件发生的时间序列过程。它具有独立性稀疏性均匀性的基本特征。其中,独立性告诉我们在任意两个不重叠的时间区间中,事件的发生是独立的。这事实上是大部分简化模型或者基础模型的要求,往往能够大幅简化计算,得到更多深层的结论或推论。其次,独立性指的是在非常短的时间区间内,事件的发生概率是非常小的,所以在同一时间点同时发生多个事件的概率可以忽略不计。由此还有一个“对偶”(虽然这么说不太严谨)的性质:均匀性,它说的是在等长的时间间隔中,事件发生的概率相同,且发生事件的频率可以用一个固定的平均速率()来描述。之所以说它是对偶的,其实是在说,在非常短的时间区间内和非常长的时间区间内,分别同时发生两次事件和一次事件都不发生的概率都非常小,需要保证具有一个固定的平均发生速率。

当然,需要注意的是,这里描述的是时间序列中的Poisson分布。相似地,也可以定义在空间序列中的Poisson分布,其中的对应的就是空间中的速率或者空间频率。事实上,Poisson过程中的事件数量就服从Poisson分布。

Poisson 分布

和上面的内容对应,Poisson分布描述了在给定时间间隔(或者空间间隔)中,随机独立事件发生次数的概率分布。Poisson分布的概率质量函数为

其中是发生的事件数,是期望值,即平均发生率,或者也可以代表方差。相对应地,Poisson分布也有这些主要性质:平均值与方差相等适用于稀疏事件

首先解释一下为什么Poisson分布的平均值与方差相等。可以想象一个思维实验来直观的理解它。首先,Poisson分布用来描述稀疏、随机的事件发生次数,就好比单位时间内检测到的宇宙射线粒子数、某个区域内车祸的发生次数一样。这些事件的发生时间和位置都是随机的,于是我们可以想象某个探测器(例如AMS)每小时大约期望检测到5个特定粒子,此时我们的期望是5。其次,方差描述的是这些事件数的波动或不确定性,对于Poisson过程来说,这些过程发生的独立性是完全随机的,那么很容易理解,在一段时间内时粒子检测的波动性应当与检测到的粒子数完全成正比。例如,在一小时内你能检测到5个特定粒子,也可能是3个或7个,虽然数量发生变化,但是这种波动的大小大致与平均发生次数相当。

即,直觉上可以理解为,由于事件是稀疏和独立的,事件数的波动主要由事件发生的偶然性决定,而这种偶然性在每个单位时间间隔内是类似的。因此可以在直观上理解为什么波动(即方差)与事件发生的期望相当。

另外,也完全可以从二项分布中得到这一结论。Poisson分布实际上就是二项分布时的极限形式。事实上,即使是二项分布,在大部分时候(事件较多时),它的期望也和方差相近。对于二项分布,总有事件的期望为,而方差为。如果事件较多,或者概率较少时,二项分布就退化为Poisson分布。此时平均值和方差就完全相等了。

我们甚至在极限情况下使用

可以直接从二项分布退化至Poisson分布的形式。具体地,表现为

这就是Poisson分布的概率质量函数。

Poisson 分布与其它分布的关系

我们已经知道了Poisson分布和二项分布的基本关系。当在二项分布中,并保持恒定,二项分布事实上就退化为了Poisson分布,这称为Poisson极限。这幅简单的图可视化了当增大时,二项分布转向Poisson分布的变化:

img

另外,Poisson分布和正态分布也有类似的关系或者说近似关系。我们之前保持恒定,如果我们让逐渐增大,当它较大的时,Poisson分布就可以有效近似为正态分布,即满足期望与方差相等的高斯分布。这在处理大量事件时是有效的近似,因为归根结底,Poisson在处理稀疏、少量事件时特点才足够鲜明。这里展示了当逐渐增大时,由Poisson分布转为高斯分布的可视化结果。为了更好进行对比,我进行了平移。

img

事实上,这也和之前所提到的中心极限定理相关。换句话说,当事件数较大时,泊松分布的形状趋于对称,这时泊松分布可以用正态分布来近似。

Poisson 分布的误差计算

在上文中提到,Poisson分布的方差和期望相等,都是。因此,对于Poisson分布的标准差的估计,可以直接从计数中得到:

相对误差(Relative Error)是误差相对于观测值的比例,用来衡量误差的相对大小:

因此,对于较大的,相对误差较小;而对于较小的,相对误差较大。这一点在实际数据处理中十分重要。

在实验数据处理中,Poisson分布往往被用来估计或计算事件的效率。例如,我们可能会计算总事件数和满足条件的事件数目,从而计算比率来估计效率。任务要求中提到的,我们有时使用一个直方图的数据比上另一个直方图的数据来计算效率。即:

使用误差传播公式可以计算效率的误差。假设两种分布都满足Poisson分布,可以认为二者的误差分别为。对于由两个变量比值构成的函数,其传播误差为

因此,效率计算的误差为

另外,在实际计算中,数据合并时的误差依然可以使用平方根规则计算:

Task 2

这是修改后的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/* 
* 注意1:在ROOT中,直方图默认与当前目录关联(例如TFile)。当关闭TFile时,与其关联的所有直方图都会被删除,如果之后需要调用的话就会产生无效的内存访问。这可能是我在运行中偶尔出现 crash 的原因。
* 注意2:在所有部分,我只计算了区间(45,80)的卡方/自由度。
*/

#include "langaufun.C" // 该函数是根据cern.root指导网页中教程中得到的,其中定义了郎道卷积高斯函数

void task1_5() {
auto start = std::chrono::high_resolution_clock::now(); // 记录程序运行时间

TVirtualFitter::SetDefaultFitter("Minuit"); // **在上一次程序运行中发现无法使用 Minuit 改用 Minuit2,这一次发现无法使用 Minuit2 改用 Minuit。由于每个A_B都要提示一次(1152次),于是预先在这里声明。但是为什么?**
TFile *file = TFile:: Open("va.root", "READ");
TFile *outFile = new TFile("fit_results.root","RECREATE");

std::ofstream outputFile("chi2Ndf_and_gainCoefficients.txt");

TH2D *gainMap = new TH2D("gainMap", "GainCoefficients; A; B", 192, 0, 192, 6, 0, 6);
TH2D *chi2Map = new TH2D("chi2Map", "ChiSquared/NDF; A; B", 192, 0, 192, 6, 0, 6);

double totalMPV = 0; // 用于累加MPV
int numDetectors = 0; // 探测器数量

std::vector<double> mpvList; // 每个探测器的MPV
std::vector<TH1D*> correctedHists; // 输出的(校正后的)值方图
std::vector<TH1D*> originalHists; // 由于出现了程序崩溃,存储一个原始直方图。应该是程序开头的注释中提到的问题

int lefFit = 0, riFit = 0, lefMergedFit = 0, riMergedFit = 0; // 拟合区间
lefFit = 45;
riFit = 75;
lefMergedFit = 45;
riMergedFit = 75;

for (int A=0; A < 192; ++A){
for (int B=0; B < 6; ++B){
TString histName = TString::Format("%d_%d", A, B);
TH1D *hist = (TH1D*)file -> Get(histName);

TH1D *histClone = (TH1D*)hist -> Clone();
histClone -> SetDirectory(0); // 克隆后解除关联(也是为了防止读取空内存)
histClone -> Sumw2(); // 计算误差,方便后续误差条的显示(虽然并不明显?)
originalHists.push_back((TH1D*)hist -> Clone()); // 再次存储一个直方图

TF1 *landauGausFit = new TF1("landauGausFit", langaufun, lefFit, riFit, 4); // 选择区间的原因在文章中有说明
landauGausFit -> SetParameters(1.8, 50, 50000, 3);
landauGausFit -> SetParNames("Width", "MP", "Area", "Sigma");

landauGausFit -> SetNpx(1000); // 由于初步拟合时发现峰值附近的拟合函数看起来太尖锐,手动增加绘制精度
hist -> Fit(landauGausFit, "Q");

double gainCoefficient = landauGausFit -> GetMaximumX(lefFit, riFit);

double chi2 = 0;
int ndf = 0;
for (int bin = hist -> FindBin(45); bin <= hist -> FindBin(90); bin ++){
double observed = hist -> GetBinContent(bin);
double expected = landauGausFit -> Eval(hist ->GetBinCenter(bin));
if (expected > 0){
chi2 += (observed -expected) * (observed - expected)/ expected;
ndf++;
}
}
ndf -= 4;

double chi2NDF = chi2 / ndf;

gainMap -> SetBinContent(A + 1, B + 1, gainCoefficient);
chi2Map -> SetBinContent(A + 1, B + 1, chi2NDF);

outputFile << A << "_" << B << " " << chi2NDF << " " << gainCoefficient << "\n";

mpvList.push_back(gainCoefficient);
totalMPV += gainCoefficient;
numDetectors ++;

hist -> Write();

}
}

double targetMPV = totalMPV / numDetectors; // 计算平均值用来对齐

for (int A = 0; A < 192; ++A){
for (int B = 0; B < 6; ++B){

TH1D *hist = originalHists[A * 6 + B];
double gainCoefficient = mpvList[A * 6 + B];
double correctionFactor = targetMPV / gainCoefficient; // 定义一个修正(对齐)因子

TH1D * correctedHist = (TH1D*)hist -> Clone(TString::Format("corrected_%d_%d", A, B));
correctedHist -> SetDirectory(0); // 也是解除关联
correctedHist -> Sumw2();
correctedHist -> Scale(correctionFactor);
correctedHists.push_back(correctedHist);

correctedHist -> Write();
}
}

// 这是一个用于合并的直方图
TH1D *mergedHist = (TH1D*)correctedHists[0] -> Clone("merged_hist");
mergedHist -> Reset();
mergedHist -> SetDirectory(0); // 也是解除关联
mergedHist -> Sumw2(); // 计算误差

for (size_t i = 0; i < correctedHists.size(); ++i){
mergedHist -> Add(correctedHists[i]);
}

double bestChi2NDF = 1e6;
int bestLefFit = 40, bestRiFit = 75;

for (double lower = 40; lower <= 48; lower += 0.5) {
for (double upper = 60; upper <= 75; upper += 0.5) {

TF1 *tempFit = new TF1("tempFit", langaufun, lower, upper, 4);
tempFit->SetParameters(1.8, 50, 50000, 3);
tempFit->SetParNames("Width", "MP", "Area", "Sigma");
tempFit->SetNpx(1000);

mergedHist->Fit(tempFit, "Q");

double tempChi2 = 0;
int tempNDF = 0;
for (int bin = mergedHist->FindBin(45); bin <= mergedHist->FindBin(80); bin++) {
double observed = mergedHist->GetBinContent(bin);
double expected = tempFit->Eval(mergedHist->GetBinCenter(bin));
if (expected > 0) {
tempChi2 += (observed - expected) * (observed - expected) / expected;
tempNDF++;
}
}
tempNDF -= 4;
double tempChi2NDF = tempChi2 / tempNDF;

// 判断是否为最优
if (tempChi2NDF < bestChi2NDF) {
bestChi2NDF = tempChi2NDF;
bestLefFit = lower;
bestRiFit = upper;
}

delete tempFit;
}
}

TF1 *mergedFit = new TF1("mergedFit", langaufun, bestLefFit, bestRiFit, 4);
mergedFit -> SetParameters(1.8, 50, 50000, 3);
mergedFit -> SetParNames("Width", "MP", "Area", "Sigma");
mergedFit -> SetNpx(1000);
mergedHist -> Fit(mergedFit, "Q");

double mergedChi2 = 0;
int mergedNDF = 0;
for (int bin = mergedHist -> FindBin(45); bin <= mergedHist -> FindBin(80);bin ++){
double observed = mergedHist -> GetBinContent(bin);
double expected = mergedFit -> Eval(mergedHist -> GetBinCenter(bin));
if (expected > 0){
mergedChi2 += (observed - expected) * (observed - expected) / expected;
mergedNDF++;
}
}
mergedNDF -= 4;

double mergedChi2NDF = mergedChi2 / mergedNDF;

mergedFit -> Write();
mergedHist -> Write();
gainMap -> Write();
chi2Map -> Write();

file -> Close();
outFile -> Close();
outputFile.close();


TFile *inFile = TFile::Open("fit_results.root", "READ");

TH2D *gainHist = (TH2D*)inFile -> Get("gainMap"); // 增益系数热力图
TH2D *chi2Hist = (TH2D*)inFile -> Get("chi2Map"); // 卡方分布热力图
TH1D *mergedHistFromFile = (TH1D*)inFile -> Get("merged_hist"); // 合并后的直方图
TF1 *mergedFitFromFile = (TF1*)inFile -> Get("mergedFit"); // 拟合后的合并后的直方图
TH1D *gainHist1D = new TH1D("gainHist1D", "Gain Coefficients; Detector ID; Gain Coefficient", 1152, 1, 1153); // 1152 bin的直方图,用于绘制增益系数

TCanvas *c1 = new TCanvas("c1", "Gain Coefficient Heatmap", 800, 600);
gStyle -> SetOptStat(0);
gainHist -> Draw("COLZ");

c1 -> SaveAs("gain_heatmap.pdf");

TCanvas *c2 = new TCanvas("c2", "ChiSquared/NDF Heatmap", 800, 600);
gStyle -> SetOptStat(0);
chi2Hist -> Draw("COLZ");

c2 -> SaveAs("chi2Ndf_heatmap.pdf");

TCanvas *c3 = new TCanvas("c3", "Merged Spectrum", 800, 600);
mergedHistFromFile -> Draw("HIST");

// 这里的 merged_spectrum 实际上是对每个原始直方图进行郎道卷积高斯函数拟合,得到MPV,计算平均MPV后以 correctionFactor = targetMPV / gainCoefficient 作为校正因子对齐得到的合并的直方图
c3 -> SaveAs("merged_spectrum.pdf");

TCanvas *c4 = new TCanvas("c4", "Fitted Merged Spectrum", 800, 600);
gStyle -> SetOptFit(1111);
mergedHistFromFile -> Draw("E1Y0");
mergedFitFromFile -> SetLineColor(kRed);
mergedFitFromFile -> Draw("SAME");

gPad -> Update();
TPaveStats *stats = (TPaveStats*)mergedHistFromFile -> FindObject("stats");
if (stats){
stats -> SetX1NDC(0.65);
stats -> SetY1NDC(0.65);
stats -> SetX2NDC(0.90);
stats -> SetY2NDC(0.90);
stats -> SetBorderSize(1);
stats -> AddText(TString::Format("Chi2/NDF = %.2f", mergedChi2NDF));
}

c4 -> SaveAs("fitted_merged_spectrum.pdf");
TCanvas *c5 = new TCanvas("c5", "Gain Coefficients 2D plot", 800, 600);
for (int i = 0; i < 1152; ++i){
gainHist1D -> SetBinContent(i+1, mpvList[i]);
}
gainHist1D -> Draw("HIST");

c5 -> SaveAs("gain_coefficients_1D_plot.pdf");

inFile -> Close(0);
c1 -> Close(0);
c2 -> Close(0);
c3 -> Close(0);
c4 -> Close(0);
c5 -> Close(0);

auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end - start;

std::cout << "Optimal fit range: [" << bestLefFit << ", " << bestRiFit << "], with Chi2/NDF:" << mergedChi2NDF << "." << std::endl;
std::cout << "Attention: All Chi2 / NDF are in the range of [45, 80]." << std::endl;
std::cout << "Total execution time: " << elapsed.count() << " seconds." << std::endl;

}

这是输出的结果:

  • 增益系数热力图,用于粗略地检查增益系数的分布与区间,对增益系数总体上的分布情况有初步的概念
    pic4
  • 卡方热力图,是使用郎道卷积高斯函数拟合后得到的结果,用于粗略地估计拟合的情况及优劣
    pic5
  • 对齐合并后的数据,使用郎道卷积高斯函数在区间(45,75)范围内对原始数据进行拟合,分别得到MPV;然后,计算平均MPV后以 correctionFactor = targetMPV / gainCoefficient 作为校正因子对齐得到的合并的直方图
    pic6
  • 使用郎道卷积高斯函数对对齐合并后的数据拟合
    pic7
  • 增益系数1D图,将1152个结果分别对应到一维坐标上查看
    pic8

需要注意的是,我们在改进后的图像中,对拟合区间进行了修改。这次我们没有使用迭代法进行区间的寻找,而是对下区间(40,28),上区间(60,75)以0.5的步长进行了逐次拟合,并且选出了具有最小卡方值的结果作为最终拟合结果,同时输出了对应的卡方和区间。另外,注意到图像中存在不属于目标信号的部分,我们将原本在全域内计算的卡方值限制在了(45,80)的区间内。

代码还对其他地方进行了部分润色。首先,将定义朗道卷积高斯函数的部分分开,作为源文件引入。完整的朗道卷积高斯函数定义部分如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
double langaufun(double *x, double *par) {

// Fit parameters:
// par[0]=Width (scale) parameter of Landau density
// par[1]=Most Probable (MP, location) parameter of Landau density
// par[2]=Total area (integral -inf to inf, normalization constant)
// par[3]=Width (sigma) of convoluted Gaussian function

// Numeric constants
double invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)
double mpshift = -0.22278298; // Landau maximum location 应该是Landau分布峰值位置的修正

// Control constants
double np = 100.0; // number of convolution steps
double sc = 5.0; // convolution extends to +-sc Gaussian sigmas

// Variables
double xx;
double mpc;
double fland;
double sum = 0.0;
double xlow,xupp;
double step;
double i;

// MP shift correction
mpc = par[1] - mpshift * par[0];

// Range of convolution integral
xlow = x[0] - sc * par[3];
xupp = x[0] + sc * par[3];

step = (xupp-xlow) / np;

// Convolution integral of Landau and Gaussian by sum
for(i=1.0; i<=np/2; i++) {
xx = xlow + (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);

xx = xupp - (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);
}

return (par[2] * step * sum * invsq2pi / par[3]);
}

这里是根据网址https://root.cern/doc/master/langaus_8C.html中的指导信息进行编写的。

其次,由于代码中多个地方用到了拟合区间,于是将区间单独定义变量,便于修改与调试。特别是在第二部分,拟合对齐后的函数时,使用了一个简单的多次拟合方法,选取了最优的部分作为最终的输出结果。

另外,在保留两张热力图的基础上,重新将1152个结果展到一维中,输出了一份1D增益系数对应图。这幅图可以更直观地看出增益系数的分布。事实上,我可能会考虑将某些偏离范围太多的数据剔除。

Attached Files

这是输出的.txt文件,分别为序号、卡方/自由度、增益系数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
0_0 27.1185 56.9719
0_1 36.2556 56.6609
0_2 38.9643 56.5725
0_3 36.5862 56.439
0_4 22.8373 56.4878
0_5 24.1615 56.9432
1_0 23.3697 56.038
1_1 21.0211 54.9144
1_2 20.5554 56.0631
1_3 22.1165 55.4412
1_4 24.7265 56.8967
1_5 27.036 57.3983
2_0 22.2791 56.2909
2_1 21.6461 56.3293
2_2 18.1691 56.7378
2_3 19.3287 56.2051
2_4 20.7685 56.5289
2_5 25.7605 57.2244
3_0 20.6257 55.9012
3_1 21.8058 54.8343
3_2 17.8032 54.9597
3_3 21.6517 54.8572
3_4 16.8054 54.9367
3_5 18.9762 55.8549
4_0 23.0382 58.6843
4_1 26.0997 58.4618
4_2 40.2156 59.3585
4_3 46.7383 58.514
4_4 31.8251 58.8652
4_5 23.9064 59.2581
5_0 27.3739 57.0377
5_1 26.4834 55.8784
5_2 26.3731 56.9839
5_3 24.9787 56.5172
5_4 25.2147 57.7577
5_5 25.5272 56.8074
6_0 23.5404 56.9687
6_1 44.0583 58.4015
6_2 110.186 61.7719
6_3 18.7404 55.7566
6_4 27.4466 57.5701
6_5 56.7936 61.1431
7_0 17.1505 56.2378
7_1 20.5175 56.1063
7_2 22.3748 56.3201
7_3 22.9364 56.8313
7_4 21.0569 56.6524
7_5 26.1116 57.3848
8_0 17.1409 55.0472
8_1 20.8142 55.357
8_2 19.3207 55.0456
8_3 19.1171 54.7405
8_4 18.862 55.0217
8_5 23.1187 55.4648
9_0 17.2755 56.0445
9_1 19.1435 55.0288
9_2 15.1169 55.0093
9_3 18.4428 55.2592
9_4 19.0726 54.8529
9_5 17.5602 55.993
10_0 16.8005 56.5679
10_1 17.328 56.2602
10_2 18.6744 56.6158
10_3 17.0735 56.5649
10_4 18.235 57.292
10_5 17.6345 57.9697
11_0 20.0941 57.9975
11_1 24.8176 58.3714
11_2 33.0508 58.5538
11_3 36.2312 58.4019
11_4 36.3018 58.7779
11_5 30.0259 58.7951
12_0 24.1454 57.7323
12_1 29.428 58.3148
12_2 49.3121 59.7143
12_3 20.9306 56.7262
12_4 19.5794 57.5696
12_5 44.8906 59.9453
13_0 20.529 57.3375
13_1 23.9591 56.4494
13_2 38.9943 58.5681
13_3 21.4923 56.8332
13_4 50.041 58.9886
13_5 41.931 59.5181
14_0 17.6431 56.9313
14_1 20.4598 56.5005
14_2 21.7619 56.3806
14_3 19.0304 55.7813
14_4 19.7061 55.8364
14_5 21.4483 56.5215
15_0 28.2479 58.4982
15_1 37.32 58.3177
15_2 29.1222 58.77
15_3 29.6651 58.3651
15_4 22.0012 57.2913
15_5 20.1608 58.5
16_0 24.2109 58.3063
16_1 27.493 58.1355
16_2 31.0788 57.9371
16_3 28.3938 57.6686
16_4 23.2301 57.307
16_5 21.0671 58.0719
17_0 19.6797 56.2812
17_1 17.0012 56.7225
17_2 18.4285 55.9918
17_3 18.1296 56.0572
17_4 21.5272 56.2655
17_5 20.8422 56.3503
18_0 18.3308 56.3359
18_1 19.3756 56.5546
18_2 19.9685 56.0317
18_3 20.9162 56.0318
18_4 18.0392 55.7327
18_5 20.5338 56.7885
19_0 17.3386 56.1409
19_1 17.2538 56.1525
19_2 19.2617 56.517
19_3 18.4623 56.3085
19_4 18.3162 56.4581
19_5 19.1199 56.9348
20_0 20.4455 56.7625
20_1 16.8958 56.121
20_2 18.7569 56.902
20_3 19.8042 56.3399
20_4 20.8429 56.2458
20_5 23.3755 56.7412
21_0 19.4872 56.3332
21_1 19.2712 56.1937
21_2 18.2118 56.8685
21_3 18.5215 55.6419
21_4 19.3454 56.3083
21_5 22.6144 57.4457
22_0 19.9922 56.375
22_1 19.8495 55.9044
22_2 21.5013 56.8629
22_3 19.6718 56.1642
22_4 22.0041 56.9315
22_5 21.8975 56.8773
23_0 18.7391 58.0102
23_1 22.1661 56.9736
23_2 29.3301 57.5533
23_3 31.5621 56.8588
23_4 28.821 57.801
23_5 24.1671 57.518
24_0 18.564 57.7546
24_1 26.3539 57.4221
24_2 25.498 57.2233
24_3 42.2669 58.4147
24_4 30.39 57.4419
24_5 28.9903 58.2304
25_0 19.2088 56.4781
25_1 17.8967 54.8164
25_2 15.1321 56.0168
25_3 16.1047 55.9892
25_4 20.0719 56.2858
25_5 21.6485 56.7067
26_0 19.0048 56.1787
26_1 21.3054 56.7719
26_2 33.496 57.9368
26_3 23.6894 56.0494
26_4 19.825 56.213
26_5 21.721 56.5973
27_0 15.7818 56.9601
27_1 18.8922 56.7382
27_2 20.6346 56.9153
27_3 17.2889 56.2576
27_4 21.7642 56.2277
27_5 19.8231 56.6425
28_0 20.9187 56.0152
28_1 17.3029 55.8817
28_2 21.1841 56.0124
28_3 20.7077 55.9653
28_4 19.9962 55.7089
28_5 18.0615 56.3522
29_0 20.907 55.3971
29_1 20.417 55.5486
29_2 17.7559 54.8008
29_3 19.0939 55.2217
29_4 17.1935 55.1478
29_5 20.0384 55.8733
30_0 19.9732 56.4354
30_1 22.3084 56.3638
30_2 20.3522 55.8371
30_3 19.3911 55.6154
30_4 20.0784 55.4283
30_5 22.0625 56.1714
31_0 29.3007 57.6398
31_1 38.4691 57.7056
31_2 32.471 57.8143
31_3 25.3721 57.4153
31_4 22.0206 57.2556
31_5 21.9784 57.6814
32_0 27.9146 52.1043
32_1 37.1103 56.0814
32_2 41.7458 58.071
32_3 46.3536 58.0428
32_4 32.5361 57.4023
32_5 36.3701 57.7242
33_0 33.6856 57.3951
33_1 34.8922 56.4835
33_2 34.2076 57.2833
33_3 29.1541 56.5613
33_4 29.1109 55.9827
33_5 31.0177 56.6909
34_0 28.4693 56.9831
34_1 31.4788 56.1293
34_2 30.1867 56.3665
34_3 27.4394 55.8847
34_4 28.6246 56.7034
34_5 31.8584 56.9455
35_0 34.1757 56.4664
35_1 31.8239 55.7348
35_2 29.2663 55.3803
35_3 27.7812 56.0453
35_4 31.2783 55.5084
35_5 26.2962 56.3189
36_0 29.1236 57.7877
36_1 25.3177 57.4492
36_2 37.9756 59.2079
36_3 48.867 57.777
36_4 32.2205 57.4457
36_5 26.0227 54.9598
37_0 35.4332 56.3578
37_1 32.7246 55.7437
37_2 33.7127 56.0208
37_3 29.0593 55.786
37_4 30.0134 55.6015
37_5 34.4608 57.2395
38_0 32.6605 56.305
38_1 34.7087 55.5049
38_2 36.5627 55.5521
38_3 32.0785 55.6023
38_4 33.9868 55.577
38_5 31.3259 56.8322
39_0 34.474 58.1326
39_1 46.8834 58.1955
39_2 59.8621 59.4307
39_3 29.7041 56.7106
39_4 33.2093 56.7952
39_5 32.9795 58.5739
40_0 28.4489 57.0242
40_1 26.2425 56.5554
40_2 31.0099 56.6844
40_3 30.041 56.4133
40_4 25.6104 56.2003
40_5 31.4902 57.8117
41_0 27.3012 56.1907
41_1 30.7086 54.574
41_2 28.4083 54.9958
41_3 28.4134 54.8687
41_4 24.4555 55.2897
41_5 25.2321 56.0771
42_0 32.5726 55.8812
42_1 28.0697 54.9597
42_2 33.0734 55.3003
42_3 32.6427 55.055
42_4 27.2304 54.9863
42_5 29.6651 56.5156
43_0 27.8913 57.998
43_1 26.3272 57.6759
43_2 30.5653 58.6037
43_3 33.9402 58.8025
43_4 35.3732 57.1996
43_5 39.6391 54.495
44_0 30.1085 56.3178
44_1 32.1235 56.0063
44_2 32.7781 56.2376
44_3 28.5649 55.6014
44_4 27.9919 55.6404
44_5 28.723 56.5558
45_0 34.564 56.2043
45_1 31.4067 55.7451
45_2 29.4717 55.5319
45_3 32.9115 55.4389
45_4 32.4365 55.3605
45_5 26.4343 56.3201
46_0 28.3126 57.2324
46_1 28.8008 55.3177
46_2 30.4722 56.1288
46_3 31.6287 56.2102
46_4 28.5083 55.966
46_5 32.5991 56.2682
47_0 38.6863 54.3588
47_1 34.5987 57.0593
47_2 35.8122 59.324
47_3 31.1811 58.1129
47_4 23.4019 57.2799
47_5 26.6935 58.1485
48_0 22.956 48.8452
48_1 43.0171 55.1059
48_2 32.3566 58.3348
48_3 39.8118 57.7979
48_4 27.4085 57.0665
48_5 29.7087 58.1446
49_0 29.9345 56.5061
49_1 28.8652 55.719
49_2 28.5057 55.86
49_3 30.9734 55.6144
49_4 24.2922 54.9709
49_5 32.9799 56.9425
50_0 29.3708 56.1957
50_1 24.8398 56.1396
50_2 31.4033 56.1904
50_3 28.0347 56.3834
50_4 29.0156 55.4833
50_5 38.2097 57.8154
51_0 28.7403 56.0532
51_1 27.5593 55.7444
51_2 27.1307 55.5981
51_3 22.9387 55.5786
51_4 24.0534 56.0315
51_5 27.5475 56.8699
52_0 28.6096 57.0196
52_1 27.1415 56.3977
52_2 25.9008 56.4104
52_3 28.7495 55.5032
52_4 29.4151 55.8049
52_5 27.1377 56.9323
53_0 29.5911 56.2617
53_1 28.2377 55.86
53_2 33.5511 55.9198
53_3 31.2673 55.5437
53_4 28.1601 55.8914
53_5 32.7098 56.4035
54_0 29.8696 56.4878
54_1 32.5543 55.1665
54_2 26.6388 55.359
54_3 29.2709 55.5947
54_4 33.1532 55.5583
54_5 29.0823 57.0867
55_0 25.2991 57.3334
55_1 31.1569 56.8836
55_2 29.6152 57.9313
55_3 42.1232 57.3113
55_4 33.9889 55.8756
55_5 31.5835 52.989
56_0 26.1067 57.5436
56_1 24.0335 56.7041
56_2 25.2568 57.6749
56_3 38.1862 57.7888
56_4 30.0744 56.3491
56_5 31.3412 53.6808
57_0 27.4624 56.2294
57_1 30.9839 55.6404
57_2 29.8307 55.6359
57_3 32.7884 55.3943
57_4 27.5628 55.649
57_5 26.1188 56.6726
58_0 27.0565 56.3337
58_1 28.9442 54.914
58_2 27.5902 55.6526
58_3 29.053 55.3747
58_4 26.8243 55.0512
58_5 26.7435 55.7933
59_0 24.5628 56.9026
59_1 26.852 56.5012
59_2 25.7834 56.6293
59_3 27.3368 55.7298
59_4 24.3748 55.7176
59_5 28.6622 56.7463
60_0 27.5199 56.3029
60_1 30.8512 55.7286
60_2 28.684 55.6099
60_3 27.3551 55.7437
60_4 29.2991 55.4482
60_5 24.2974 56.3273
61_0 29.8913 56.0167
61_1 28.7188 55.1864
61_2 30.7626 55.5579
61_3 29.1064 55.6441
61_4 27.7449 55.5234
61_5 28.8087 56.6475
62_0 29.6446 56.0169
62_1 31.9119 55.5381
62_2 28.7056 55.7022
62_3 25.7665 55.4462
62_4 28.2899 55.6454
62_5 33.6476 56.7714
63_0 31.9999 53.2802
63_1 29.1948 56.466
63_2 32.3223 57.4897
63_3 40.2781 57.0217
63_4 27.6093 56.6272
63_5 30.3263 57.9028
64_0 30.6938 52.0835
64_1 43.4754 54.7371
64_2 36.6094 57.1622
64_3 34.9415 57.6795
64_4 31.5171 58.2081
64_5 36.5201 59.421
65_0 41.1424 57.6076
65_1 38.5453 55.8524
65_2 39.0169 56.6454
65_3 34.1603 56.0922
65_4 32.9975 56.0202
65_5 40.1849 56.8191
66_0 37.5932 56.8554
66_1 34.6131 55.4925
66_2 35.1515 55.892
66_3 33.5807 55.8229
66_4 38.4655 56.365
66_5 30.6365 57.4844
67_0 35.5483 56.7016
67_1 32.521 56.0952
67_2 35.0738 56.0884
67_3 33.2755 56.13
67_4 35.7362 56.1981
67_5 32.0883 57.3201
68_0 37.0195 57.9725
68_1 30.9419 57.619
68_2 31.3934 57.5528
68_3 36.0976 56.5077
68_4 44.6949 53.2053
68_5 30.2096 51.9715
69_0 41.1076 56.8139
69_1 37.5399 56.2838
69_2 40.2206 56.713
69_3 40.2386 55.5403
69_4 37.0249 55.7574
69_5 37.6046 57.9855
70_0 38.9374 56.8199
70_1 36.5608 55.829
70_2 38.2661 55.8955
70_3 38.0177 55.5883
70_4 34.3414 55.3087
70_5 38.7764 56.6754
71_0 34.8513 57.7803
71_1 36.7922 57.0769
71_2 42.3952 57.8609
71_3 32.9942 56.4724
71_4 38.2316 56.8708
71_5 40.5687 58.8221
72_0 33.2039 57.6154
72_1 31.0735 56.0769
72_2 30.8174 56.3493
72_3 31.7545 56.3755
72_4 28.6214 56.1433
72_5 33.0493 56.6588
73_0 35.9657 56.7143
73_1 38.7482 55.8004
73_2 35.2796 55.681
73_3 35.2129 55.5688
73_4 40.0632 56.0934
73_5 34.017 56.4211
74_0 32.4752 56.4718
74_1 36.4533 55.3927
74_2 36.0801 55.4904
74_3 32.907 55.8066
74_4 32.4233 55.6247
74_5 36.0275 57.1965
75_0 32.8248 58.3133
75_1 28.7024 57.9148
75_2 42.5462 57.2067
75_3 34.5173 56.127
75_4 37.3854 54.0473
75_5 34.7689 52.2822
76_0 35.8544 57.3541
76_1 39.9099 56.6368
76_2 35.0808 56.1053
76_3 36.8667 56.0114
76_4 37.1084 56.3771
76_5 30.7176 57.3311
77_0 39.6423 56.8042
77_1 38.2224 55.4102
77_2 34.2866 55.5387
77_3 36.0652 55.5475
77_4 33.5189 55.6459
77_5 31.5674 56.5052
78_0 30.5933 57.0513
78_1 38.7287 55.7267
78_2 35.3564 55.6183
78_3 38.5163 55.6414
78_4 34.3628 55.5771
78_5 37.3562 56.445
79_0 31.3865 52.3541
79_1 36.6439 52.3099
79_2 33.1651 56.8999
79_3 34.4958 57.7649
79_4 30.3645 57.6694
79_5 28.903 57.9487
80_0 29.9903 50.5479
80_1 31.3317 54.8977
80_2 32.1061 55.2963
80_3 31.0029 56.3593
80_4 30.978 56.6383
80_5 32.6519 57.3518
81_0 31.0242 57.2657
81_1 29.5028 55.4531
81_2 31.4205 55.2575
81_3 31.2476 55.1866
81_4 31.0093 55.6509
81_5 30.9898 56.7423
82_0 37.0784 55.6832
82_1 34.7409 55.1429
82_2 37.3864 55.0037
82_3 36.2776 55.2771
82_4 41.1678 55.1374
82_5 36.1912 56.8788
83_0 39.3716 56.088
83_1 33.0173 55.6179
83_2 33.5643 55.8562
83_3 32.3517 55.3991
83_4 30.2534 55.3968
83_5 28.5127 56.683
84_0 29.4338 56.5109
84_1 29.4372 55.673
84_2 33.4174 56.271
84_3 36.2312 55.4636
84_4 33.992 55.8982
84_5 32.0709 57.3738
85_0 33.6274 56.872
85_1 35.1733 56.3138
85_2 39.3239 57.0479
85_3 34.5943 55.4126
85_4 31.3997 55.0312
85_5 36.6007 56.8133
86_0 33.3643 56.8878
86_1 34.0941 56.0637
86_2 35.9865 56.673
86_3 36.2238 55.701
86_4 32.8822 55.8419
86_5 31.7268 57.8975
87_0 32.2932 58.2909
87_1 30.9523 57.3278
87_2 24.8329 58.0893
87_3 30.7636 56.3618
87_4 27.8992 54.345
87_5 28.336 52.3897
88_0 31.3061 57.9231
88_1 23.8713 56.7547
88_2 26.4984 56.5242
88_3 25.0831 55.6314
88_4 35.8707 54.4212
88_5 24.3314 52.3195
89_0 32.1552 56.6466
89_1 32.4524 55.3314
89_2 28.4211 55.3473
89_3 29.2473 55.7393
89_4 27.841 55.3694
89_5 26.2653 56.9555
90_0 29.3216 56.7451
90_1 32.9491 55.482
90_2 30.6768 55.4733
90_3 31.2545 55.3053
90_4 25.6559 55.1708
90_5 27.0793 56.2226
91_0 25.4944 57.0431
91_1 31.2905 55.8258
91_2 29.1052 55.9268
91_3 29.4441 55.9625
91_4 33.2521 55.9904
91_5 29.2212 56.9287
92_0 32.1592 57.0302
92_1 33.4902 55.8253
92_2 30.0357 55.9608
92_3 33.3452 55.8087
92_4 34.767 55.8747
92_5 26.5029 57.3729
93_0 32.6573 56.1436
93_1 34.4346 55.5067
93_2 32.4858 55.2604
93_3 34.9116 55.3547
93_4 34.7595 55.3283
93_5 33.7644 56.7519
94_0 27.7546 56.5215
94_1 30.1727 55.0797
94_2 32.2559 55.0084
94_3 29.2098 54.9079
94_4 30.3126 54.985
94_5 36.2079 56.0145
95_0 28.5141 55.9515
95_1 35.301 54.1048
95_2 27.0762 55.3367
95_3 28.9721 56.4401
95_4 26.1858 56.4245
95_5 27.6771 57.4549
96_0 26.1474 52.3831
96_1 38.5585 53.6436
96_2 35.8431 54.4916
96_3 28.2865 55.5144
96_4 25.5636 56.0043
96_5 32.0326 57.3744
97_0 37.073 56.8607
97_1 37.8881 55.2487
97_2 33.9339 55.4185
97_3 34.2758 54.9279
97_4 32.3586 54.9027
97_5 35.0928 56.1725
98_0 33.762 56.0803
98_1 33.4325 54.5772
98_2 34.0795 54.967
98_3 33.1676 55.1167
98_4 38.5603 55.2528
98_5 35.6925 56.5528
99_0 32.4567 56.8688
99_1 32.5667 55.4215
99_2 34.5488 55.6496
99_3 32.0765 55.7347
99_4 30.707 55.7706
99_5 30.1773 57.0652
100_0 32.4499 56.4101
100_1 27.2256 55.3954
100_2 38.2244 55.6678
100_3 38.6948 54.1625
100_4 31.3656 52.9136
100_5 28.1142 54.5522
101_0 39.3422 56.2894
101_1 40.5112 55.2704
101_2 38.0113 55.4431
101_3 39.0837 55.2211
101_4 39.2877 55.3049
101_5 37.4923 56.4645
102_0 38.4179 57.0077
102_1 38.8483 55.849
102_2 38.3146 55.794
102_3 36.7529 55.7113
102_4 36.2261 55.5929
102_5 38.0109 56.8509
103_0 30.3878 57.2185
103_1 31.2353 56.2463
103_2 37.417 56.7176
103_3 37.9594 56.1506
103_4 42.1766 56.8047
103_5 41.3436 57.9589
104_0 28.3457 57.0358
104_1 27.2779 55.6727
104_2 32.75 55.4726
104_3 33.5562 55.46
104_4 31.0708 55.7105
104_5 30.7521 56.5345
105_0 33.8336 56.4991
105_1 32.0191 55.3413
105_2 30.1473 55.1547
105_3 29.6431 55.0913
105_4 28.0891 55.0076
105_5 37.0844 55.8005
106_0 35.2621 56.3552
106_1 32.6241 55.4779
106_2 35.2671 55.316
106_3 30.5659 55.3698
106_4 34.5047 55.7327
106_5 33.954 57.0741
107_0 139.049 67.1823
107_1 38.8544 59.015
107_2 23.5389 57.4581
107_3 20.4079 56.9564
107_4 18.5684 57.3527
107_5 14.0477 55.7466
108_0 30.9636 56.8615
108_1 34.72 55.6202
108_2 33.2869 55.4371
108_3 38.4863 55.4306
108_4 34.9889 55.6498
108_5 31.3713 57.0208
109_0 35.9433 56.9286
109_1 28.8181 55.4395
109_2 34.1249 56.0488
109_3 32.0264 55.7115
109_4 34.3445 55.9681
109_5 35.4207 57.3198
110_0 37.5646 56.7772
110_1 33.3455 55.547
110_2 33.4632 55.6866
110_3 36.8495 55.42
110_4 39.5842 55.3768
110_5 38.1874 56.4853
111_0 30.811 52.6551
111_1 32.495 53.8676
111_2 27.9946 56.3564
111_3 25.9335 55.6298
111_4 26.4348 56.1174
111_5 37.4962 57.8817
112_0 26.5511 54.9722
112_1 35.7936 52.3624
112_2 32.4632 53.7161
112_3 29.2926 54.96
112_4 27.5535 55.188
112_5 28.7967 56.0769
113_0 32.6318 57.2457
113_1 35.3507 55.6451
113_2 32.8433 55.1596
113_3 33.8039 55.4735
113_4 34.8602 55.5396
113_5 30.2519 56.6668
114_0 32.4032 56.308
114_1 32.2232 55.8001
114_2 35.5382 55.5114
114_3 33.213 55.5054
114_4 34.8592 55.8318
114_5 35.2071 56.9898
115_0 32.3066 56.7867
115_1 30.581 55.3382
115_2 30.8318 55.6841
115_3 31.2452 56.4475
115_4 30.8493 56.2681
115_5 29.1689 56.7159
116_0 30.3975 57.1821
116_1 34.1494 56.5021
116_2 34.9685 56.424
116_3 27.87 55.8535
116_4 33.2237 56.1538
116_5 34.351 57.0652
117_0 30.5078 56.5239
117_1 29.9961 54.9197
117_2 29.8015 55.3609
117_3 33.9865 55.3963
117_4 43.2396 55.6976
117_5 35.9059 56.3912
118_0 30.9215 55.9572
118_1 33.7539 54.7897
118_2 30.684 54.8885
118_3 32.3199 55.0146
118_4 33.2332 55.2562
118_5 32.6687 56.2762
119_0 33.1306 56.0021
119_1 27.6495 55.4877
119_2 33.018 54.9306
119_3 32.897 54.1213
119_4 33.1054 52.3791
119_5 32.9293 51.742
120_0 29.5308 56.4417
120_1 28.6857 56.1081
120_2 27.6578 56.4685
120_3 29.1958 54.825
120_4 31.449 52.8753
120_5 26.6211 54.6878
121_0 29.2852 56.1811
121_1 30.4473 55.1254
121_2 31.0545 54.4586
121_3 29.3537 55.0166
121_4 32.7896 55.0422
121_5 30.8144 56.5771
122_0 31.1204 56.2792
122_1 35.2604 55.2676
122_2 31.1239 55.5759
122_3 35.5321 54.9203
122_4 38.2287 55.6441
122_5 32.84 55.7057
123_0 27.5274 56.841
123_1 29.3523 55.7245
123_2 29.8281 55.6276
123_3 32.3382 55.5113
123_4 32.9035 55.4513
123_5 29.847 56.9647
124_0 31.5212 56.9377
124_1 32.5091 55.8719
124_2 34.0461 57.122
124_3 33.721 56.0745
124_4 32.1934 56.6332
124_5 27.8648 57.3943
125_0 37.412 56.2341
125_1 33.3804 55.1036
125_2 32.9588 55.3611
125_3 32.8715 55.6826
125_4 36.6324 55.6112
125_5 29.7059 56.842
126_0 34.6098 55.9521
126_1 34.5121 55.3469
126_2 34.0738 54.5075
126_3 33.2713 54.7435
126_4 35.3804 54.7704
126_5 32.4169 56.2713
127_0 32.7586 52.2107
127_1 39.6482 51.9665
127_2 28.2044 54.4864
127_3 27.2583 54.9407
127_4 21.7176 54.7379
127_5 30.2591 56.0711
128_0 22.9265 53.4242
128_1 24.2306 52.8819
128_2 23.0739 54.7015
128_3 19.9178 53.7649
128_4 18.4657 54.5848
128_5 26.0503 55.1851
129_0 32.1706 56.6163
129_1 31.3009 55.9942
129_2 34.4548 56.783
129_3 33.608 56.1387
129_4 28.226 56.0686
129_5 31.0335 57.2393
130_0 26.7814 56.8783
130_1 28.4183 56.1838
130_2 27.5708 56.7724
130_3 27.8136 56.1945
130_4 28.6328 56.1916
130_5 32.1436 57.9486
131_0 26.7842 57.8341
131_1 28.8113 56.75
131_2 28.7877 57.6905
131_3 31.0413 56.8943
131_4 26.9626 56.8347
131_5 31.1319 58.6342
132_0 25.2187 55.3171
132_1 23.89 54.3776
132_2 23.187 54.4703
132_3 21.7262 53.4139
132_4 24.1952 53.2197
132_5 21.6382 52.2523
133_0 28.8022 56.5642
133_1 27.6359 55.2262
133_2 27.8613 55.611
133_3 31.599 55.45
133_4 29.2179 55.0728
133_5 28.2118 55.9784
134_0 29.191 56.8963
134_1 33.4978 55.7901
134_2 30.6472 55.9696
134_3 27.8586 55.8126
134_4 29.2396 55.4794
134_5 30.34 56.7275
135_0 25.2218 57.1092
135_1 27.5476 56.253
135_2 29.5095 56.3198
135_3 29.8903 56.2751
135_4 27.8552 56.0312
135_5 27.7561 57.6273
136_0 22.0397 57.566
136_1 28.7682 57.1673
136_2 28.9331 57.3752
136_3 26.6892 57.0277
136_4 27.1778 56.8662
136_5 24.1441 58.0017
137_0 25.3677 57.343
137_1 23.9966 56.7072
137_2 24.0745 56.9436
137_3 25.321 56.8492
137_4 25.4406 56.4552
137_5 26.5239 57.3884
138_0 23.6274 56.242
138_1 23.4281 55.7367
138_2 23.1462 55.4365
138_3 23.4152 55.7153
138_4 20.8142 54.6323
138_5 19.6037 54.9314
139_0 21.9034 55.2177
139_1 19.3003 53.8133
139_2 19.6251 54.4413
139_3 21.5096 53.584
139_4 25.1624 52.7441
139_5 26.1199 51.9632
140_0 31.494 56.796
140_1 30.8326 55.8778
140_2 28.7845 56.6437
140_3 29.1736 56.5494
140_4 27.0275 56.5295
140_5 31.861 57.0774
141_0 27.8697 56.8848
141_1 24.2685 56.1062
141_2 26.9038 55.869
141_3 23.8765 56.1124
141_4 24.0928 56.0046
141_5 26.1227 58.2769
142_0 24.6195 56.2218
142_1 26.1017 55.1753
142_2 26.0655 56.0846
142_3 29.3318 55.6669
142_4 24.7746 55.3769
142_5 24.6487 56.1612
143_0 17.8607 52.9227
143_1 28.0662 54.4267
143_2 19.6793 53.7171
143_3 19.4598 54.4359
143_4 19.4952 54.7232
143_5 25.4686 55.0218
144_0 17.2891 54.1269
144_1 19.6641 54.568
144_2 18.5382 56.8139
144_3 17.4901 55.1382
144_4 20.3555 55.2462
144_5 26.6574 57.6388
145_0 24.8871 56.5892
145_1 26.3399 55.9194
145_2 28.5557 56.99
145_3 30.2422 56.4264
145_4 25.2537 55.6337
145_5 33.7165 57.6625
146_0 25.8275 55.9765
146_1 24.2891 55.9659
146_2 26.9006 55.8261
146_3 22.4376 56.0437
146_4 27.2294 56.4645
146_5 25.5937 57.1465
147_0 25.5209 57.2265
147_1 26.4001 56.1003
147_2 24.1479 56.6402
147_3 26.2209 56.4361
147_4 21.6983 56.3516
147_5 23.1889 57.0747
148_0 23.6803 57.1721
148_1 24.1398 55.9485
148_2 25.5575 56.326
148_3 29.0082 56.5767
148_4 26.4036 55.759
148_5 27.5515 56.8861
149_0 23.3008 57.292
149_1 23.7407 55.8211
149_2 25.907 55.9109
149_3 28.8805 55.5337
149_4 25.4307 55.4317
149_5 28.146 56.9132
150_0 27.0961 56.1485
150_1 27.4953 54.9523
150_2 29.3065 55.7009
150_3 28.0541 55.1869
150_4 30.9472 54.8042
150_5 26.469 55.5811
151_0 22.4193 55.2163
151_1 23.1066 54.0343
151_2 18.4471 54.0311
151_3 20.6292 53.1761
151_4 25.216 52.7201
151_5 21.1365 54.4958
152_0 22.9462 55.044
152_1 21.0181 54.1009
152_2 18.1771 54.997
152_3 18.4818 54.5698
152_4 20.6794 53.6138
152_5 15.3652 54.2419
153_0 27.9789 57.4679
153_1 32.9064 57.0324
153_2 29.704 56.5531
153_3 33.6211 56.1513
153_4 56.6027 57.3838
153_5 118.081 61.2258
154_0 28.4752 57.4377
154_1 22.4714 56.4639
154_2 24.6955 56.9124
154_3 21.4538 56.1647
154_4 22.0562 56.3733
154_5 22.0095 57.059
155_0 20.1215 57.6369
155_1 20.8352 56.4734
155_2 22.104 56.8233
155_3 22.9739 56.3402
155_4 24.5942 56.7467
155_5 24.2254 57.6082
156_0 30.7918 56.7039
156_1 26.3827 56.2395
156_2 28.4978 56.5567
156_3 23.5452 56.4462
156_4 24.3567 56.4184
156_5 22.7141 57.3091
157_0 34.5877 57.0918
157_1 36.9212 57.193
157_2 76.2253 59.8656
157_3 25.2817 56.0465
157_4 23.8771 55.4193
157_5 47.4856 59.4371
158_0 26.7976 56.6048
158_1 35.9085 57.4569
158_2 27.0938 57.2309
158_3 23.545 56.0536
158_4 22.7603 55.3286
158_5 29.6709 58.2382
159_0 20.1719 53.2663
159_1 22.143 53.4881
159_2 18.2199 53.7125
159_3 18.3716 54.02
159_4 19.1337 54.6133
159_5 21.9398 55.4806
160_0 10.2637 58.9787
160_1 12.9245 55.1836
160_2 12.3552 53.1616
160_3 13.5008 53.9149
160_4 14.8454 54.0108
160_5 16.1764 54.2957
161_0 18.7622 55.657
161_1 18.4674 55.788
161_2 17.7622 56.0505
161_3 18.6032 55.3283
161_4 20.3709 56.2731
161_5 16.9234 57.4004
162_0 15.7679 56.5855
162_1 15.5518 56.6432
162_2 22.845 58.5514
162_3 21.5527 58.4775
162_4 28.3441 59.5154
162_5 69.7968 62.7439
163_0 17.3936 56.5607
163_1 19.095 56.5705
163_2 17.8265 57.6319
163_3 21.5664 57.8516
163_4 18.7049 56.8614
163_5 20.7047 58.6944
164_0 18.161 54.3133
164_1 12.5692 54.1206
164_2 13.1489 53.8597
164_3 11.7587 53.2782
164_4 12.3222 53.976
164_5 9.36931 55.6099
165_0 18.8956 55.9919
165_1 19.3912 55.6215
165_2 19.9723 55.3742
165_3 21.7193 54.7552
165_4 20.2553 54.6997
165_5 19.9856 55.0993
166_0 16.4297 56.6435
166_1 19.6797 56.0218
166_2 19.3878 55.9106
166_3 17.1507 55.9171
166_4 20.8668 55.9733
166_5 19.4878 56.2645
167_0 15.1689 56.9777
167_1 16.7632 56.7594
167_2 19.3045 57.2035
167_3 18.2796 56.8078
167_4 19.985 56.636
167_5 17.0772 56.9805
168_0 16.511 56.9677
168_1 17.7411 56.742
168_2 20.5744 56.7535
168_3 19.367 56.7834
168_4 16.7627 56.7354
168_5 18.2643 57.5802
169_0 13.6944 56.8493
169_1 17.6498 56.563
169_2 17.7343 56.4827
169_3 16.5669 56.1657
169_4 15.0786 55.9992
169_5 18.5247 56.4154
170_0 14.2032 56.4324
170_1 17.4697 56.3001
170_2 15.2133 56.2573
170_3 13.8164 55.3198
170_4 14.6769 54.9158
170_5 13.0458 55.4725
171_0 13.1712 53.9962
171_1 11.2508 53.5812
171_2 10.2824 54.7467
171_3 14.2848 53.4089
171_4 12.0604 54.6855
171_5 7.9811 56.6094
172_0 13.9548 57.0085
172_1 16.4145 56.3697
172_2 15.7257 56.8086
172_3 18.4968 56.5866
172_4 17.169 56.466
172_5 14.54 56.635
173_0 17.8414 56.6945
173_1 19.7505 56.4686
173_2 17.7492 56.8289
173_3 19.363 56.7575
173_4 15.8181 56.7734
173_5 19.813 57.347
174_0 15.879 55.0404
174_1 16.9445 55.0594
174_2 14.9329 55.2987
174_3 16.8241 55.3535
174_4 17.8912 55.5718
174_5 16.6648 56.3301
175_0 12.7685 58.021
175_1 10.8958 54.4876
175_2 10.8572 54.7766
175_3 12.9679 53.7234
175_4 12.317 54.3398
175_5 16.1304 54.4194
176_0 5.90991 58.1045
176_1 9.86547 55.4947
176_2 10.6386 53.6455
176_3 9.65992 54.8155
176_4 10.7932 55.0405
176_5 15.0996 55.6658
177_0 12.9011 54.6842
177_1 14.2871 54.5569
177_2 16.0288 55.6361
177_3 17.123 55.292
177_4 19.1851 56.3042
177_5 14.3974 56.6013
178_0 16.8414 57.1074
178_1 15.7632 56.6239
178_2 17.3485 56.1995
178_3 17.0881 56.4436
178_4 17.846 56.3698
178_5 16.4281 57.0643
179_0 18.3802 57.7101
179_1 20.0449 56.6862
179_2 21.0071 58.9083
179_3 19.2138 57.0576
179_4 20.7877 57.6032
179_5 23.4819 58.9224
180_0 17.0523 56.8217
180_1 20.8555 56.2979
180_2 18.6166 56.4571
180_3 18.1015 56.2577
180_4 21.6797 56.5533
180_5 20.9663 56.8777
181_0 16.4368 57.4885
181_1 19.3468 56.6919
181_2 15.0594 56.1447
181_3 18.8226 55.8381
181_4 16.3227 56.4685
181_5 16.9176 56.5011
182_0 16.6344 56.1745
182_1 18.8228 55.7809
182_2 19.3152 55.6653
182_3 18.8662 54.6449
182_4 19.7356 54.5385
182_5 19.1238 55.0685
183_0 15.5688 54.1077
183_1 12.8817 53.7264
183_2 8.8808 53.883
183_3 10.6358 53.6805
183_4 12.8052 54.4335
183_5 9.73887 56.6318
184_0 10.748 54.1375
184_1 12.297 54.1971
184_2 9.89297 54.4675
184_3 11.9374 54.4001
184_4 10.5612 55.4816
184_5 9.54613 58.74
185_0 14.1916 56.8212
185_1 17.4078 57.1213
185_2 21.9249 57.381
185_3 11.5298 55.131
185_4 15.1413 55.7626
185_5 13.6453 56.3761
186_0 16.4181 57.248
186_1 18.1788 57.0309
186_2 16.7904 56.3894
186_3 14.5175 56.4151
186_4 13.7552 56.4881
186_5 18.0246 57.9616
187_0 15.0368 57.5769
187_1 14.0741 57.3349
187_2 15.0359 57.3596
187_3 15.0324 57.4058
187_4 19.7827 57.1002
187_5 15.028 57.4859
188_0 14.6077 57.1735
188_1 21.8923 57.2339
188_2 15.6166 57.121
188_3 15.2574 56.9944
188_4 16.7011 56.46
188_5 17.8402 58.5061
189_0 14.1554 56.8014
189_1 17.8926 56.8173
189_2 17.0767 56.0478
189_3 15.7017 56.6833
189_4 17.919 56.4632
189_5 18.5128 57.2624
190_0 13.7638 54.876
190_1 17.9686 55.1212
190_2 17.6777 56.2211
190_3 17.0215 55.4183
190_4 18.9226 55.7214
190_5 17.5201 57.9733
191_0 9.59673 57.3786
191_1 10.097 55.5701
191_2 10.6683 53.5257
191_3 10.7778 53.9785
191_4 12.8871 53.7702
191_5 13.6346 54.2127
  • Title: A&C_task 1.5
  • Author: Albert Cheung
  • Created at : 2024-09-20 14:05:11
  • Updated at : 2024-09-25 15:36:31
  • Link: https://www.albertc9.github.io/2024/09/20/2024A-Ctask5/
  • License: This work is licensed under CC BY-NC-SA 4.0.
On this page
A&C_task 1.5