A&C_task 1.4

Albert Cheung

Tasks

共享文件中所有A_B格式的TH1D直方图(A:0-191; B:0-5)为1152个320微米厚硅微条探测器对宇宙线粒子的响应(可以认为相同的输入),选用合适的函数拟合,并计算不同探测器的增益系数(使不同探测器对相同输入实现相同的输出幅度)

分享文件:9.09科创[文件夹]
云盘链接:https://pan.cstcloud.cn/s/bv3DxWHbQVE
密码:he3y 过期时间:2025-09-30 19:43:08

One Possible Solution

首先弥补之前内容的缺失,在这里简单补充硅微条探测器(Silicon Strip Detector)的知识。这里是硅微条探测器的示意图。

img1

由图可知,硅微条探测器在N型硅的表面上制作了高掺杂的P+微条,于是在每个微条与N型硅基底形成了一个PN结;另外,它在微挑上附加了铝条作为电极(阴极)。在硅条之间使用了SiO_2进行了隔离,底部的背面还有高掺杂的N+层附上铝电极作为阳极。

当带电粒子穿过耗尽层时,会产生电子-空穴对,分别向正极与阴极移动,并且和其它电离传感器类似,在电极上感应出电压信号。由于我们在铝电极上施加了反向电压,PN结形成的耗尽层在外电场的作用下随偏压的增加而进一步变厚;最终,耗尽层由于外电场的作用几乎扩展到整个N型硅材料,导致死区被挤压得特别小。由于耗尽层具有高电阻率,漏电流相对很小,导致几乎所有的电压都被施加在耗尽层上,大大提高了耗尽层内的电场强度,进一步导致耗尽层成为灵敏区。另外,由于载流子迁移率较高,且灵敏区较薄(如常约300μm),信号感应时间较短(约5ns)。

容易看出,感应信号通过微条上的电极将电信号导出并传输到电子学系统,并且微条的编号可以相对准确地反映入射粒子的位置或者重现它们的轨迹。类似地,如果采用P型硅作为基体,并将P+和N+掺杂位置互换就可以得到P型硅微条探测器。

因此,感应信号的分辨其实由硅条的间距决定。事实上,它满足:

需要注意的是,这里提到的硅微条探测器实际上用的是直流电;对于交流电的改进版本,我们使用交流硅微条探测器。交流硅微条探测器的原理和滞留硅微条探测器类似,都是基于PN结形成耗尽层进行电荷收集。不过,在交流耦合探测器中,微条电极和读出电子学系统之间使用了电容进行隔离,形成“交流耦合”。因此,它的工作机制事实上依赖于感应信号在电极和读出系统之间通过电容耦合进行传输,而非普通的硅微条探测器的直接连接。

二者的结构有一些区别。直流硅微条探测器事实上几乎没有或只有非常薄的绝缘层,而交流耦合硅微条探测器使用使用单层的SiO2或其他材料构成的绝缘层将电极与硅基体隔离起来。具体说来,交流硅微条探测器具有以下结构特点:

  • 电容耦合电极和读出系统
  • 在电极和基体之间有绝缘材料(例如SiO2),使感应信号通过交流耦合电容传输

因此,交流硅微条探测器具有和直流相比的优势。在直流中,信号通过直流电流直接被传递;而在交流硅微条探测器中,耦合电容传递了交流信号,使直流噪声被去除。在直流中,虽然漏电流很少,但是偶尔还是需要进行特殊处理;在交流中,漏电流被电容隔离,因此不会产生电子学噪声。因此,直流硅微条探测器相对来说应用在较简单的情况中,此时我们对信号纯度的要求并不高;而交流硅微条探测器能够有效屏蔽部分噪声,适合对低噪声与高纯度有要求的系统,特别是在高粒子流环境下表现相对较好。所以,直流探测器成本较低,适用于对噪声不特别敏感的例如中低能粒子探测器中;交流耦合探测器更适用应用于高能物理实验,如粒子对撞机、宇宙射线探测等,尤其在高技术率的情况下表现更卓越。

不过需要注意的是,直流硅微条探测器的电荷收集效果相对较好,虽然有时存在电荷积累影响系统产生的测量结果;相比而言交流硅微条探测器的电荷收集效果就较差。

另外,需要简单介绍一下题目中需要我们计算的”增益系数“。增益系数(Gain Coefficient)事实上是粒子探测器中用来描述探测器对输入信号放大能力的一个参量。具体来说,增益系数通常表示为探测器输入信号与输出信号之间的比值;在这里,给定相同的输入,可以通过拟合探测器输出的响应分布计算出探测器的增益系数。

在附件va.root中,我们有1152个TH1D类型的直方图,分别对应320微米厚硅微条探测器对粒子的响应。其中,横坐标代表输出信号,纵坐标代表事件的频率或概率。在代码中,我们采用了郎道卷积高斯函数进行拟合(参考cern.root上的教程代码进行卷积计算),其中有四个参数:

  • par[0]: 郎道分布的宽度参数
  • par[1]: 郎道分布的最可能值
  • par[2]: 卷积的总面积
  • par[3]: 高斯分布的宽度

在拟合直方图后,我们可以提取出郎道分布中的最可能值作为增益系数;因为它其实是输出响应的最可能值,能够代表探测器在接受到相同输入时,输出信号的最大值位置,能够代表每个探测器的增益系数的大小。

另外,如果希望得到更确切的MPV值,可以选择计算郎道卷积高斯分布最大值的横坐标作为MPV。在这里,我们选择这一种做法。

以下是代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

// 有一个需要注意的点:在ROOT中,直方图默认与当前目录关联(例如TFile)。当关闭TFile时,与其关联的所有直方图都会被删除,如果之后需要调用的话就会产生无效的内存访问。这可能是我在运行中偶尔出现 crash 的原因。

gSystem -> Load("libMathCore"); // 似乎有时会产生崩溃,并且提示可能问题出在 libMathCore 上。因此添加这行代码防止崩溃(虽然可能是我电脑的问题)。

// 这部分是根据指导网页 https://root.cern/doc/master/langaus_8C.html 中的教程,定义朗道卷积高斯函数。**好像有直接调用的方法?**
double langaufun(double *x, double *par) {

// Fit parameters:
// par[0]=Width (scale) parameter of Landau density
// par[1]=Most Probable (MP, location) parameter of Landau density
// par[2]=Total area (integral -inf to inf, normalization constant)
// par[3]=Width (sigma) of convoluted Gaussian function

// Numeric constants
double invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)
double mpshift = -0.22278298; // Landau maximum location 应该是Landau分布峰值位置的修正

// Control constants
double np = 100.0; // number of convolution steps
double sc = 5.0; // convolution extends to +-sc Gaussian sigmas

// Variables
double xx;
double mpc;
double fland;
double sum = 0.0;
double xlow,xupp;
double step;
double i;

// MP shift correction
mpc = par[1] - mpshift * par[0];

// Range of convolution integral
xlow = x[0] - sc * par[3];
xupp = x[0] + sc * par[3];

step = (xupp-xlow) / np;

// Convolution integral of Landau and Gaussian by sum
for(i=1.0; i<=np/2; i++) {
xx = xlow + (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);

xx = xupp - (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);
}

return (par[2] * step * sum * invsq2pi / par[3]);
}


void task1_4() {
TVirtualFitter::SetDefaultFitter("Minuit"); // **在上一次程序运行中发现无法使用 Minuit 改用 Minuit2,这一次发现无法使用 Minuit2 改用 Minuit。由于每个A_B都要提示一次(1152次),于是预先在这里声明。但是为什么?**
TFile *file = TFile::Open("va.root", "READ");
TFile *outFile = new TFile("fit_results.root","RECREATE");

std::ofstream outputFile("chi2Ndf_and_gainCoefficients.txt");

TH2D *gainMap = new TH2D("gainMap", "GainCoefficients; A; B", 192, 0, 192, 6, 0, 6);
TH2D *chi2Map = new TH2D("chi2Map", "ChiSquared/NDF; A; B", 192, 0, 192, 6, 0, 6);

double totalMPV = 0; // 用于累加MPV
int numDetectors = 0; // 探测器数量

std::vector<double> mpvList; // 每个探测器的MPV
std::vector<TH1D*> correctedHists; // 输出的(校正后的)值方图
std::vector<TH1D*> originalHists; // 由于出现了程序崩溃,存储一个原始直方图。应该是程序开头的注释中提到的问题

for (int A=0; A < 192; ++A){
for (int B=0; B < 6; ++B){
TString histName = TString::Format("%d_%d", A, B);
TH1D *hist = (TH1D*)file -> Get(histName);

TH1D *histClone = (TH1D*)hist -> Clone();
histClone -> SetDirectory(0); // 克隆后解除关联(也是为了防止读取空内存)
histClone -> Sumw2(); // 计算误差,方便后续误差条的显示(虽然并不明显?)
originalHists.push_back((TH1D*)hist -> Clone()); // 再次存储一个直方图

TF1 *landauGausFit = new TF1("landauGausFit", langaufun, 35, 150, 4); // 选择35到150的原因在文章中有说明
landauGausFit -> SetParameters(1.8, 50, 50000, 3);
landauGausFit -> SetParNames("Width", "MP", "Area", "Sigma");

landauGausFit -> SetNpx(1000); // 由于初步拟合时发现峰值附近的拟合函数看起来太尖锐,手动增加绘制精度

hist -> Fit(landauGausFit, "Q");

double gainCoefficient = landauGausFit -> GetMaximumX(35, 150);

double chi2 = landauGausFit -> GetChisquare();
int ndf = landauGausFit -> GetNDF();
double chi2NDF = chi2 / ndf;

gainMap -> SetBinContent(A + 1, B + 1, gainCoefficient);
chi2Map -> SetBinContent(A + 1, B + 1, chi2NDF);

outputFile << A << "_" << B << " " << chi2NDF << " " << gainCoefficient << "\n";

mpvList.push_back(gainCoefficient);
totalMPV += gainCoefficient;
numDetectors ++;

hist -> Write();

}
}

double targetMPV = totalMPV / numDetectors; // 计算平均值用来对齐

for (int A = 0; A < 192; ++A){
for (int B = 0; B < 6; ++B){

TH1D *hist = originalHists[A * 6 + B];
double gainCoefficient = mpvList[A * 6 + B];
double correctionFactor = targetMPV / gainCoefficient; // 定义一个修正(对齐)因子

TH1D * correctedHist = (TH1D*)hist -> Clone(TString::Format("corrected_%d_%d", A, B));
correctedHist -> SetDirectory(0); // 也是解除关联
correctedHist -> Sumw2();
correctedHist -> Scale(correctionFactor);
correctedHists.push_back(correctedHist);

correctedHist -> Write();
}
}

// 这是一个用于合并的直方图
TH1D *mergedHist = (TH1D*)correctedHists[0] -> Clone("merged_hist");
mergedHist -> Reset();
mergedHist -> SetDirectory(0); // 也是解除关联
mergedHist -> Sumw2(); // 计算误差

for (size_t i = 0; i < correctedHists.size(); ++i){
mergedHist -> Add(correctedHists[i]);
}

TF1 *mergedFit = new TF1("mergedFit", langaufun, 35, 150, 4);
mergedFit -> SetParameters(1.8, 50, 50000, 3);
mergedFit -> SetParNames("Width", "MP", "Area", "Sigma");
mergedFit -> SetNpx(1000);
mergedHist -> Fit(mergedFit, "Q");

mergedFit -> Write();
mergedHist -> Write();
gainMap -> Write();
chi2Map -> Write();

file -> Close();
outFile -> Close();
outputFile.close();


TFile *inFile = TFile::Open("fit_results.root", "READ");

TH2D *gainHist = (TH2D*)inFile -> Get("gainMap"); // 增益系数热力图
TH2D *chi2Hist = (TH2D*)inFile -> Get("chi2Map"); // 卡方分布热力图
TH1D *mergedHistFromFile = (TH1D*)inFile -> Get("merged_hist"); // 合并后的直方图
TF1 *mergedFitFromFile = (TF1*)inFile -> Get("mergedFit"); // 拟合后的合并后的直方图

TCanvas *c1 = new TCanvas("c1", "Gain Coefficient Heatmap", 800, 600);
gStyle -> SetOptStat(0);
gainHist -> Draw("COLZ");

c1 -> SaveAs("gain_heatmap.pdf");

TCanvas *c2 = new TCanvas("c2", "ChiSquared/NDF Heatmap", 800, 600);
gStyle -> SetOptStat(0);
chi2Hist -> Draw("COLZ");

c2 -> SaveAs("chi2Ndf_heatmap.pdf");

TCanvas *c3 = new TCanvas("c3", "Merged Spectrum", 800, 600);
mergedHistFromFile -> Draw("HIST");

// 这里的 merged_spectrum 实际上是对每个原始直方图进行郎道卷积高斯函数拟合,得到MPV,计算平均MPV后以 correctionFactor = targetMPV / gainCoefficient 作为校正因子对齐得到的合并的直方图
c3 -> SaveAs("merged_spectrum.pdf");

TCanvas *c4 = new TCanvas("c4", "Fitted Merged Spectrum", 800, 600);
gStyle -> SetOptFit(1111);
mergedHistFromFile -> Draw("E1");
mergedFitFromFile -> SetLineColor(kRed);
mergedFitFromFile -> Draw("SAME");

gPad -> Update();
TPaveStats *stats = (TPaveStats*)mergedHistFromFile -> FindObject("stats");
if (stats){
stats -> SetX1NDC(0.65);
stats -> SetY1NDC(0.65);
stats -> SetX2NDC(0.90);
stats -> SetY2NDC(0.90);
stats -> SetBorderSize(1);
}

c4 -> SaveAs("fitted_merged_spectrum.pdf");

inFile -> Close(0);
c1 -> Close(0);
c2 -> Close(0);
c3 -> Close(0);
c4 -> Close(0);
}

以下是输出的图片,分别为

  • 增益系数热力图,用于粗略地检查增益系数的分布与区间,对增益系数总体上的分布情况有初步的概念
    pic4
  • 卡方热力图,是使用郎道卷积高斯函数拟合后得到的结果,用于粗略地估计拟合的情况及优劣
    pic5
  • 对齐合并后的数据,使用郎道卷积高斯函数在区间(50,135)范围内对原始数据进行拟合,分别得到MPV;然后,计算平均MPV后以 correctionFactor = targetMPV / gainCoefficient 作为校正因子对齐得到的合并的直方图
    pic6
  • 使用郎道卷积高斯函数对对齐合并后的数据拟合,得到结果
    pic7

首先解释一下选择拟合区间为(35,150)的原因。首先打开所给的数据文件,对数据有一个直观的理解。在初步随机寻找中我们发现在数据30_4,40_0,173_3等文件中,大约在20和240的位置分别有一个明显的峰值。为了准确提取关键数据或者得到更精确的拟合结果,我们选择从35到150进行拟合。

pic1

pic2

pic3

总体上,拟合结果依然存在许多问题。首先还是上一次任务中出现的峰值与拟合结果重合程度较低的问题。在图4中可以直观地发现,拟合结果与上一次十分相似,都在峰值位置出现了过高的情况。这依然可能是由于数据点数量和噪声的影响,但是为何在峰值最为明显依旧值得考虑(甚至噪声总产生正影响,说明未必是白噪声)。

其次,这次的数据相较上一次而言,在主峰的两侧有两个更明显的副峰,在上面的三个截图中可以发现,而右侧的副峰在修正合并后的图像中更为明显。注意到右侧副峰似乎有一种高斯分布或者略偏态分布的情况,如果再次使用郎道卷积高斯函数对225-350的范围进行再次拟合,可能也能得到另外一个结果。

[Question:为什么误差棒的大小这么小?]

在程序中,我们使用了mergedHistFromFile -> Draw("E1");的代码为第四副图绘制了一个误差棒。但是误差棒似乎特别小,我甚至不确定它是否绘制成功。

另外,我们可以快速从下方的.txt文件中读出各探测器的卡方/自由度对分别的拟合优劣性进行评判,也可以计算上方总卡方/自由度进行计算。事实上,计算对齐后数据的平均卡方/自由度约为73.44。考虑到峰值附近具有明显的误差,这样的误差说明数据在峰值之外的位置相对拟合地较好。另外,也可以考虑去除峰值附近的数据进行再计算。

Attached Files

这是输出的.txt文件,分别为序号、卡方/自由度、增益系数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
0_0 6.36992 56.9719
0_1 8.9087 56.6609
0_2 10.3417 56.5725
0_3 12.2792 56.439
0_4 25.1435 56.4878
0_5 58.9914 56.9432
1_0 72.3158 56.038
1_1 72.5236 54.9144
1_2 74.9287 56.0631
1_3 76.688 55.4412
1_4 76.8732 56.8967
1_5 80.7482 57.3983
2_0 101.929 56.2909
2_1 86.222 56.3293
2_2 87.0533 56.7378
2_3 87.1324 56.2051
2_4 89.5816 56.5289
2_5 95.0505 57.2244
3_0 90.4187 55.9012
3_1 90.2094 54.8343
3_2 88.3939 54.9597
3_3 103.544 54.8572
3_4 88.6212 54.9367
3_5 89.7721 55.8549
4_0 54.3649 58.6843
4_1 24.9281 58.4618
4_2 12.3029 59.3585
4_3 10.274 58.514
4_4 8.42624 58.8652
4_5 6.63646 59.2581
5_0 102.159 57.0377
5_1 81.3548 55.8784
5_2 102.699 56.9839
5_3 80.945 56.5172
5_4 77.1217 57.7577
5_5 74.3201 56.8074
6_0 85.4161 56.9687
6_1 79.7897 58.4015
6_2 65.354 61.7719
6_3 83.8052 55.7566
6_4 79.6201 57.5701
6_5 74.5953 61.1431
7_0 88.4801 56.2378
7_1 95.951 56.1063
7_2 84.63 56.3201
7_3 84.7083 56.8313
7_4 84.5357 56.6524
7_5 97.3981 57.3848
8_0 82.5478 55.0472
8_1 82.2128 55.357
8_2 79.1134 55.0456
8_3 85.7575 54.7405
8_4 83.1626 55.0217
8_5 93.8974 55.4648
9_0 96.3364 56.0445
9_1 95.3177 55.0288
9_2 93.2638 55.0093
9_3 95.3571 55.2592
9_4 91.5792 54.8529
9_5 94.3638 55.993
10_0 106.617 56.5679
10_1 99.0169 56.2602
10_2 94.8251 56.6158
10_3 94.6422 56.5649
10_4 92.5508 57.292
10_5 88.7121 57.9697
11_0 67.0559 57.9975
11_1 29.9758 58.3714
11_2 14.2923 58.5538
11_3 11.8806 58.4019
11_4 9.8972 58.7779
11_5 8.14003 58.7951
12_0 90.8546 57.7323
12_1 98.6067 58.3148
12_2 82.4568 59.7143
12_3 88.8376 56.7262
12_4 84.8527 57.5696
12_5 83.974 59.9453
13_0 96.6361 57.3375
13_1 97.2864 56.4494
13_2 87.2504 58.5681
13_3 92.2872 56.8332
13_4 88.2097 58.9886
13_5 87.723 59.5181
14_0 89.8041 56.9313
14_1 89.2016 56.5005
14_2 92.2119 56.3806
14_3 90.3973 55.7813
14_4 94.2658 55.8364
14_5 95.597 56.5215
15_0 7.24812 58.4982
15_1 9.1279 58.3177
15_2 11.8671 58.77
15_3 13.6042 58.3651
15_4 29.579 57.2913
15_5 61.3355 58.5
16_0 6.47566 58.3063
16_1 8.37301 58.1355
16_2 10.0771 57.9371
16_3 11.4538 57.6686
16_4 29.9129 57.307
16_5 66.4472 58.0719
17_0 87.4592 56.2812
17_1 87.4995 56.7225
17_2 90.1947 55.9918
17_3 88.6547 56.0572
17_4 107.427 56.2655
17_5 85.8268 56.3503
18_0 101.206 56.3359
18_1 105.303 56.5546
18_2 99.3874 56.0317
18_3 96.3053 56.0318
18_4 93.9622 55.7327
18_5 93.3283 56.7885
19_0 95.048 56.1409
19_1 88.215 56.1525
19_2 92.8885 56.517
19_3 92.7206 56.3085
19_4 95.604 56.4581
19_5 93.5174 56.9348
20_0 92.0653 56.7625
20_1 85.9461 56.121
20_2 88.4065 56.902
20_3 89.7092 56.3399
20_4 87.5358 56.2458
20_5 86.7695 56.7412
21_0 93.5843 56.3332
21_1 92.6855 56.1937
21_2 93.039 56.8685
21_3 89.7211 55.6419
21_4 86.6045 56.3083
21_5 82.7116 57.4457
22_0 93.6834 56.375
22_1 93.7903 55.9044
22_2 93.4196 56.8629
22_3 92.2205 56.1642
22_4 89.5677 56.9315
22_5 88.1881 56.8773
23_0 72.9603 58.0102
23_1 30.2357 56.9736
23_2 12.806 57.5533
23_3 9.4391 56.8588
23_4 8.1394 57.801
23_5 6.81399 57.518
24_0 71.9936 57.7546
24_1 37.5496 57.4221
24_2 12.0279 57.2233
24_3 11.5159 58.4147
24_4 8.47052 57.4419
24_5 7.23278 58.2304
25_0 102.448 56.4781
25_1 92.7178 54.8164
25_2 95.7963 56.0168
25_3 96.9674 55.9892
25_4 99.4921 56.2858
25_5 91.4408 56.7067
26_0 105.977 56.1787
26_1 103.549 56.7719
26_2 97.0299 57.9368
26_3 117.653 56.0494
26_4 102.715 56.213
26_5 100.989 56.5973
27_0 104.954 56.9601
27_1 117.751 56.7382
27_2 95.6811 56.9153
27_3 99.1435 56.2576
27_4 117.311 56.2277
27_5 116.4 56.6425
28_0 101.56 56.0152
28_1 93.7008 55.8817
28_2 116.74 56.0124
28_3 118.286 55.9653
28_4 97.9343 55.7089
28_5 97.2031 56.3522
29_0 99.3724 55.3971
29_1 115.742 55.5486
29_2 99.3657 54.8008
29_3 102.006 55.2217
29_4 101.148 55.1478
29_5 102.881 55.8733
30_0 99.2375 56.4354
30_1 108.391 56.3638
30_2 103.314 55.8371
30_3 101.415 55.6154
30_4 114.635 55.4283
30_5 100.035 56.1714
31_0 7.51694 57.6398
31_1 9.90859 57.7056
31_2 10.5137 57.8143
31_3 12.3231 57.4153
31_4 34.2433 57.2556
31_5 84.5326 57.6814
32_0 7.26106 52.1043
32_1 9.04285 56.0814
32_2 11.4709 58.071
32_3 13.6829 58.0428
32_4 29.3978 57.4023
32_5 67.7375 57.7242
33_0 80.9302 57.3951
33_1 94.9878 56.4835
33_2 78.6741 57.2833
33_3 81.0787 56.5613
33_4 80.4103 55.9827
33_5 83.9249 56.6909
34_0 88.1584 56.9831
34_1 88.4634 56.1293
34_2 86.1997 56.3665
34_3 86.3954 55.8847
34_4 87.83 56.7034
34_5 88.0423 56.9455
35_0 91.6597 56.4664
35_1 89.2637 55.7348
35_2 86.7645 55.3803
35_3 90.2479 56.0453
35_4 90.5457 55.5084
35_5 89.447 56.3189
36_0 57.8478 57.7877
36_1 24.1023 57.4492
36_2 12.5924 59.2079
36_3 11.6759 57.777
36_4 7.89744 57.4457
36_5 6.97397 54.9598
37_0 84.2261 56.3578
37_1 95.5242 55.7437
37_2 78.4798 56.0208
37_3 78.1437 55.786
37_4 74.2302 55.6015
37_5 86.923 57.2395
38_0 89.1676 56.305
38_1 86.7491 55.5049
38_2 97.474 55.5521
38_3 85.3608 55.6023
38_4 82.8682 55.577
38_5 83.1109 56.8322
39_0 90.3404 58.1326
39_1 100.695 58.1955
39_2 77.5863 59.4307
39_3 104.706 56.7106
39_4 87.1002 56.7952
39_5 83.4629 58.5739
40_0 97.5631 57.0242
40_1 91.3143 56.5554
40_2 93.708 56.6844
40_3 93.1066 56.4133
40_4 92.5501 56.2003
40_5 107.708 57.8117
41_0 97.2991 56.1907
41_1 94.6995 54.574
41_2 93.9258 54.9958
41_3 94.8828 54.8687
41_4 109.412 55.2897
41_5 95.0853 56.0771
42_0 112.965 55.8812
42_1 104.786 54.9597
42_2 103.739 55.3003
42_3 113.868 55.055
42_4 98.5076 54.9863
42_5 93.4147 56.5156
43_0 70.9618 57.998
43_1 31.4414 57.6759
43_2 14.0203 58.6037
43_3 12.502 58.8025
43_4 9.9593 57.1996
43_5 9.24513 54.495
44_0 94.3421 56.3178
44_1 108.35 56.0063
44_2 109.139 56.2376
44_3 89.4146 55.6014
44_4 88.7143 55.6404
44_5 90.0557 56.5558
45_0 104.023 56.2043
45_1 98.6422 55.7451
45_2 100.029 55.5319
45_3 114.809 55.4389
45_4 97.7784 55.3605
45_5 92.6519 56.3201
46_0 93.219 57.2324
46_1 90.9299 55.3177
46_2 94.1788 56.1288
46_3 114.592 56.2102
46_4 98.1833 55.966
46_5 119.903 56.2682
47_0 8.36154 54.3588
47_1 9.06646 57.0593
47_2 12.3162 59.324
47_3 13.2592 58.1129
47_4 27.8063 57.2799
47_5 65.8776 58.1485
48_0 9.0939 48.8452
48_1 9.1224 55.1059
48_2 10.6934 58.3348
48_3 14.673 57.7979
48_4 30.8388 57.0665
48_5 76.9719 58.1446
49_0 93.8014 56.5061
49_1 111.341 55.719
49_2 98.9614 55.86
49_3 122.466 55.6144
49_4 101.847 54.9709
49_5 110.976 56.9425
50_0 103.005 56.1957
50_1 94.527 56.1396
50_2 93.8963 56.1904
50_3 95.5821 56.3834
50_4 99.0984 55.4833
50_5 102.847 57.8154
51_0 101.871 56.0532
51_1 97.6855 55.7444
51_2 96.4544 55.5981
51_3 98.2182 55.5786
51_4 99.0329 56.0315
51_5 99.309 56.8699
52_0 97.9923 57.0196
52_1 105.742 56.3977
52_2 94.204 56.4104
52_3 93.9463 55.5032
52_4 92.4999 55.8049
52_5 91.1297 56.9323
53_0 100.355 56.2617
53_1 100.786 55.86
53_2 98.3195 55.9198
53_3 98.4574 55.5437
53_4 90.7127 55.8914
53_5 91.21 56.4035
54_0 99.5761 56.4878
54_1 100.394 55.1665
54_2 98.8827 55.359
54_3 95.3432 55.5947
54_4 94.5653 55.5583
54_5 92.9512 57.0867
55_0 75.1503 57.3334
55_1 36.0779 56.8836
55_2 12.4362 57.9313
55_3 11.5037 57.3113
55_4 8.7567 55.8756
55_5 7.19931 52.989
56_0 78.9288 57.5436
56_1 28.9156 56.7041
56_2 11.9712 57.6749
56_3 10.7803 57.7888
56_4 8.62463 56.3491
56_5 7.87881 53.6808
57_0 107.853 56.2294
57_1 119.129 55.6404
57_2 101.997 55.6359
57_3 119.528 55.3943
57_4 102.499 55.649
57_5 96.5378 56.6726
58_0 112.002 56.3337
58_1 108.606 54.914
58_2 109.196 55.6526
58_3 118.997 55.3747
58_4 105.384 55.0512
58_5 106.906 55.7933
59_0 108.961 56.9026
59_1 104.178 56.5012
59_2 103.245 56.6293
59_3 100.809 55.7298
59_4 101.535 55.7176
59_5 100.794 56.7463
60_0 106.637 56.3029
60_1 104.347 55.7286
60_2 103.07 55.6099
60_3 105.635 55.7437
60_4 104.913 55.4482
60_5 100.379 56.3273
61_0 101.366 56.0167
61_1 99.2501 55.1864
61_2 106.1 55.5579
61_3 105.834 55.6441
61_4 107.619 55.5234
61_5 102.267 56.6475
62_0 101.724 56.0169
62_1 102.064 55.5381
62_2 103.414 55.7022
62_3 103.344 55.4462
62_4 103.258 55.6454
62_5 101.945 56.7714
63_0 8.66475 53.2802
63_1 9.25023 56.466
63_2 10.3595 57.4897
63_3 14.0766 57.0217
63_4 32.6544 56.6272
63_5 81.5071 57.9028
64_0 7.88797 52.0835
64_1 9.50622 54.7371
64_2 11.2099 57.1622
64_3 13.3323 57.6795
64_4 23.9573 58.2081
64_5 55.9978 59.421
65_0 81.3758 57.6076
65_1 81.3046 55.8524
65_2 82.5202 56.6454
65_3 84.2618 56.0922
65_4 82.5735 56.0202
65_5 104.342 56.8191
66_0 101.713 56.8554
66_1 88.0847 55.4925
66_2 86.1825 55.892
66_3 88.3526 55.8229
66_4 90.8384 56.365
66_5 87.7417 57.4844
67_0 92.5281 56.7016
67_1 92.4623 56.0952
67_2 92.6142 56.0884
67_3 93.3802 56.13
67_4 95.6647 56.1981
67_5 93.8805 57.3201
68_0 61.579 57.9725
68_1 24.0157 57.619
68_2 12.247 57.5528
68_3 10.6672 56.5077
68_4 9.6411 53.2053
68_5 6.99877 51.9715
69_0 90.2476 56.8139
69_1 84.0313 56.2838
69_2 81.8911 56.713
69_3 81.7576 55.5403
69_4 79.9472 55.7574
69_5 77.0578 57.9855
70_0 93.9656 56.8199
70_1 90.8892 55.829
70_2 87.5659 55.8955
70_3 89.3328 55.5883
70_4 82.8615 55.3087
70_5 83.6817 56.6754
71_0 95.9417 57.7803
71_1 89.4494 57.0769
71_2 84.6651 57.8609
71_3 89.0971 56.4724
71_4 85.7662 56.8708
71_5 82.3618 58.8221
72_0 107.272 57.6154
72_1 89.9497 56.0769
72_2 93.6093 56.3493
72_3 94.7343 56.3755
72_4 95.5129 56.1433
72_5 93.3376 56.6588
73_0 103.057 56.7143
73_1 100.87 55.8004
73_2 102.758 55.681
73_3 116.78 55.5688
73_4 150.674 56.0934
73_5 101.984 56.4211
74_0 110.441 56.4718
74_1 103.95 55.3927
74_2 99.9976 55.4904
74_3 114.355 55.8066
74_4 115.047 55.6247
74_5 130.788 57.1965
75_0 70.2579 58.3133
75_1 25.8924 57.9148
75_2 15.3735 57.2067
75_3 11.4238 56.127
75_4 9.3646 54.0473
75_5 8.75463 52.2822
76_0 100.115 57.3541
76_1 97.9051 56.6368
76_2 95.4687 56.1053
76_3 95.1752 56.0114
76_4 93.0064 56.3771
76_5 95.0097 57.3311
77_0 119.524 56.8042
77_1 98.8826 55.4102
77_2 101.262 55.5387
77_3 96.8738 55.5475
77_4 97.0119 55.6459
77_5 96.3268 56.5052
78_0 92.4232 57.0513
78_1 98.7047 55.7267
78_2 96.3403 55.6183
78_3 117.139 55.6414
78_4 101.729 55.5771
78_5 104.336 56.445
79_0 7.64488 52.3541
79_1 12.9906 52.3099
79_2 11.4887 56.8999
79_3 13.6222 57.7649
79_4 28.9623 57.6694
79_5 70.0319 57.9487
80_0 7.32275 50.5479
80_1 8.86185 54.8977
80_2 10.0943 55.2963
80_3 11.8567 56.3593
80_4 28.4303 56.6383
80_5 74.5365 57.3518
81_0 90.7747 57.2657
81_1 95.0517 55.4531
81_2 94.4937 55.2575
81_3 92.5518 55.1866
81_4 94.3715 55.6509
81_5 96.9079 56.7423
82_0 107.94 55.6832
82_1 99.7512 55.1429
82_2 97.866 55.0037
82_3 102.492 55.2771
82_4 106.266 55.1374
82_5 99.7966 56.8788
83_0 107.318 56.088
83_1 101.431 55.6179
83_2 98.6303 55.8562
83_3 102.918 55.3991
83_4 102.093 55.3968
83_5 103.838 56.683
84_0 92.1558 56.5109
84_1 88.2348 55.673
84_2 93.1198 56.271
84_3 89.6408 55.4636
84_4 87.5282 55.8982
84_5 88.2782 57.3738
85_0 93.3009 56.872
85_1 89.5083 56.3138
85_2 85.4275 57.0479
85_3 94.8184 55.4126
85_4 85.5847 55.0312
85_5 89.3525 56.8133
86_0 96.8527 56.8878
86_1 98.1887 56.0637
86_2 97.3003 56.673
86_3 98.1343 55.701
86_4 95.5166 55.8419
86_5 90.3878 57.8975
87_0 79.904 58.2909
87_1 28.4788 57.3278
87_2 11.0042 58.0893
87_3 10.3096 56.3618
87_4 8.59959 54.345
87_5 7.65778 52.3897
88_0 84.1538 57.9231
88_1 27.7349 56.7547
88_2 12.1219 56.5242
88_3 9.75058 55.6314
88_4 9.23472 54.4212
88_5 7.00574 52.3195
89_0 106.748 56.6466
89_1 104.061 55.3314
89_2 107.509 55.3473
89_3 122.068 55.7393
89_4 101.776 55.3694
89_5 96.9196 56.9555
90_0 105.547 56.7451
90_1 110.431 55.482
90_2 103.176 55.4733
90_3 103.524 55.3053
90_4 103.743 55.1708
90_5 107.157 56.2226
91_0 106.943 57.0431
91_1 123.245 55.8258
91_2 106.343 55.9268
91_3 104.227 55.9625
91_4 108.22 55.9904
91_5 105.594 56.9287
92_0 102.958 57.0302
92_1 102.77 55.8253
92_2 101.281 55.9608
92_3 104.317 55.8087
92_4 101.679 55.8747
92_5 100.538 57.3729
93_0 102.586 56.1436
93_1 104.628 55.5067
93_2 111.98 55.2604
93_3 110.747 55.3547
93_4 110.208 55.3283
93_5 108.568 56.7519
94_0 96.3738 56.5215
94_1 102.789 55.0797
94_2 103.012 55.0084
94_3 103.948 54.9079
94_4 101.705 54.985
94_5 110.751 56.0145
95_0 7.57772 55.9515
95_1 9.06698 54.1048
95_2 10.2935 55.3367
95_3 12.7582 56.4401
95_4 30.3734 56.4245
95_5 82.0483 57.4549
96_0 6.9547 52.3831
96_1 8.80621 53.6436
96_2 10.4482 54.4916
96_3 11.3013 55.5144
96_4 20.4392 56.0043
96_5 56.4587 57.3744
97_0 77.2667 56.8607
97_1 92.3267 55.2487
97_2 80.0889 55.4185
97_3 80.3464 54.9279
97_4 81.3161 54.9027
97_5 82.1756 56.1725
98_0 85.2372 56.0803
98_1 82.0556 54.5772
98_2 85.2323 54.967
98_3 86.8027 55.1167
98_4 87.6267 55.2528
98_5 85.653 56.5528
99_0 88.5571 56.8688
99_1 91.5151 55.4215
99_2 91.0555 55.6496
99_3 93.5518 55.7347
99_4 90.7334 55.7706
99_5 93.4353 57.0652
100_0 59.6228 56.4101
100_1 21.0573 55.3954
100_2 13.8214 55.6678
100_3 10.2885 54.1625
100_4 8.05051 52.9136
100_5 7.04804 54.5522
101_0 86.6539 56.2894
101_1 83.4062 55.2704
101_2 82.4239 55.4431
101_3 79.2093 55.2211
101_4 78.881 55.3049
101_5 73.457 56.4645
102_0 93.885 57.0077
102_1 92.2905 55.849
102_2 86.2339 55.794
102_3 87.0575 55.7113
102_4 82.7906 55.5929
102_5 84.0813 56.8509
103_0 91.8723 57.2185
103_1 84.025 56.2463
103_2 87.0755 56.7176
103_3 89.5356 56.1506
103_4 90.6534 56.8047
103_5 84.7546 57.9589
104_0 97.2768 57.0358
104_1 91.7536 55.6727
104_2 92.5981 55.4726
104_3 90.7184 55.46
104_4 92.5623 55.7105
104_5 92.8179 56.5345
105_0 96.3056 56.4991
105_1 99.2227 55.3413
105_2 95.8869 55.1547
105_3 98.3274 55.0913
105_4 95.574 55.0076
105_5 99.8024 55.8005
106_0 107.144 56.3552
106_1 100.794 55.4779
106_2 99.2961 55.316
106_3 93.2825 55.3698
106_4 93.6121 55.7327
106_5 90.7474 57.0741
107_0 58.4366 67.1823
107_1 15.1509 59.015
107_2 7.748 57.4581
107_3 7.30444 56.9564
107_4 6.30159 57.3527
107_5 5.4721 55.7466
108_0 96.2111 56.8615
108_1 92.284 55.6202
108_2 88.6789 55.4371
108_3 91.9044 55.4306
108_4 89.9605 55.6498
108_5 85.6767 57.0208
109_0 99.548 56.9286
109_1 90.7063 55.4395
109_2 99.5143 56.0488
109_3 93.6449 55.7115
109_4 95.3443 55.9681
109_5 93.2068 57.3198
110_0 90.9252 56.7772
110_1 94.0063 55.547
110_2 93.6179 55.6866
110_3 95.5458 55.42
110_4 101.553 55.3768
110_5 102.008 56.4853
111_0 8.00386 52.6551
111_1 9.05111 53.8676
111_2 10.8164 56.3564
111_3 11.8569 55.6298
111_4 23.252 56.1174
111_5 68.4233 57.8817
112_0 7.12173 54.9722
112_1 9.10385 52.3624
112_2 10.4321 53.7161
112_3 11.1769 54.96
112_4 25.6598 55.188
112_5 72.4315 56.0769
113_0 89.6955 57.2457
113_1 100.518 55.6451
113_2 94.6696 55.1596
113_3 97.9473 55.4735
113_4 98.5633 55.5396
113_5 96.3398 56.6668
114_0 101.561 56.308
114_1 111.651 55.8001
114_2 98.9095 55.5114
114_3 99.4633 55.5054
114_4 112.942 55.8318
114_5 106.536 56.9898
115_0 100.782 56.7867
115_1 99.7419 55.3382
115_2 95.0504 55.6841
115_3 101.115 56.4475
115_4 99.891 56.2681
115_5 103.561 56.7159
116_0 95.8666 57.1821
116_1 107.366 56.5021
116_2 100.245 56.424
116_3 89.4856 55.8535
116_4 97.3768 56.1538
116_5 103.664 57.0652
117_0 97.4883 56.5239
117_1 113.709 54.9197
117_2 95.3796 55.3609
117_3 97.3709 55.3963
117_4 103.404 55.6976
117_5 92.2039 56.3912
118_0 96.9263 55.9572
118_1 102.392 54.7897
118_2 100.508 54.8885
118_3 94.5292 55.0146
118_4 93.3664 55.2562
118_5 90.1433 56.2762
119_0 79.6 56.0021
119_1 28.1445 55.4877
119_2 11.9132 54.9306
119_3 10.3288 54.1213
119_4 8.91572 52.3791
119_5 7.43958 51.742
120_0 84.2066 56.4417
120_1 25.3721 56.1081
120_2 11.7236 56.4685
120_3 10.8755 54.825
120_4 9.14573 52.8753
120_5 7.16895 54.6878
121_0 108.206 56.1811
121_1 101.419 55.1254
121_2 104.44 54.4586
121_3 100.8 55.0166
121_4 105.683 55.0422
121_5 95.6221 56.5771
122_0 105.506 56.2792
122_1 112.02 55.2676
122_2 103.006 55.5759
122_3 107.112 54.9203
122_4 150.875 55.6441
122_5 110.134 55.7057
123_0 107.903 56.841
123_1 112.026 55.7245
123_2 107.11 55.6276
123_3 102.162 55.5113
123_4 106.128 55.4513
123_5 101.889 56.9647
124_0 101.323 56.9377
124_1 101.866 55.8719
124_2 98.8281 57.122
124_3 106.64 56.0745
124_4 101.181 56.6332
124_5 100.847 57.3943
125_0 120.061 56.2341
125_1 100.588 55.1036
125_2 108.459 55.3611
125_3 107.08 55.6826
125_4 114.05 55.6112
125_5 106.685 56.842
126_0 101.268 55.9521
126_1 105.573 55.3469
126_2 98.4124 54.5075
126_3 105.567 54.7435
126_4 105.59 54.7704
126_5 104.515 56.2713
127_0 7.86061 52.2107
127_1 10.0845 51.9665
127_2 10.2903 54.4864
127_3 10.7113 54.9407
127_4 27.2611 54.7379
127_5 83.196 56.0711
128_0 6.04712 53.4242
128_1 7.41183 52.8819
128_2 9.36506 54.7015
128_3 9.6312 53.7649
128_4 16.5569 54.5848
128_5 54.0837 55.1851
129_0 75.8322 56.6163
129_1 82.8082 55.9942
129_2 90.1593 56.783
129_3 86.7097 56.1387
129_4 83.9845 56.0686
129_5 81.3353 57.2393
130_0 81.3002 56.8783
130_1 82.7599 56.1838
130_2 87.4537 56.7724
130_3 85.8473 56.1945
130_4 86.1379 56.1916
130_5 101.205 57.9486
131_0 82.8867 57.8341
131_1 84.9781 56.75
131_2 84.082 57.6905
131_3 100.627 56.8943
131_4 86.8135 56.8347
131_5 85.4895 58.6342
132_0 57.0615 55.3171
132_1 18.0003 54.3776
132_2 10.2309 54.4703
132_3 9.0678 53.4139
132_4 7.60447 53.2197
132_5 6.05943 52.2523
133_0 81.6935 56.5642
133_1 78.5958 55.2262
133_2 78.1415 55.611
133_3 78.2948 55.45
133_4 86.3721 55.0728
133_5 70.0528 55.9784
134_0 85.9163 56.8963
134_1 88.8842 55.7901
134_2 85.9181 55.9696
134_3 83.7714 55.8126
134_4 80.84 55.4794
134_5 78.5482 56.7275
135_0 89.1774 57.1092
135_1 87.0553 56.253
135_2 91.5809 56.3198
135_3 86.7551 56.2751
135_4 89.9248 56.0312
135_5 81.7877 57.6273
136_0 90.802 57.566
136_1 91.0983 57.1673
136_2 92.458 57.3752
136_3 91.837 57.0277
136_4 93.902 56.8662
136_5 90.0259 58.0017
137_0 90.9392 57.343
137_1 95.0911 56.7072
137_2 93.2964 56.9436
137_3 129.16 56.8492
137_4 91.8713 56.4552
137_5 92.0699 57.3884
138_0 97.691 56.242
138_1 96.1233 55.7367
138_2 86.9665 55.4365
138_3 85.1537 55.7153
138_4 90.1171 54.6323
138_5 81.1411 54.9314
139_0 63.2721 55.2177
139_1 18.9581 53.8133
139_2 10.6333 54.4413
139_3 8.7986 53.584
139_4 8.15882 52.7441
139_5 7.20441 51.9632
140_0 95.4126 56.796
140_1 95.2209 55.8778
140_2 92.8878 56.6437
140_3 92.8794 56.5494
140_4 89.6454 56.5295
140_5 90.674 57.0774
141_0 91.9472 56.8848
141_1 87.9772 56.1062
141_2 92.4581 55.869
141_3 88.262 56.1124
141_4 88.2881 56.0046
141_5 83.3995 58.2769
142_0 84.4295 56.2218
142_1 91.4043 55.1753
142_2 90.5802 56.0846
142_3 91.1465 55.6669
142_4 93.1918 55.3769
142_5 92.4282 56.1612
143_0 6.53949 52.9227
143_1 8.96635 54.4267
143_2 8.83412 53.7171
143_3 10.2709 54.4359
143_4 18.8111 54.7232
143_5 66.6915 55.0218
144_0 5.63134 54.1269
144_1 6.96085 54.568
144_2 7.12239 56.8139
144_3 8.82779 55.1382
144_4 20.0555 55.2462
144_5 67.9019 57.6388
145_0 90.7434 56.5892
145_1 95.3514 55.9194
145_2 88.8839 56.99
145_3 96.3967 56.4264
145_4 90.8292 55.6337
145_5 95.9364 57.6625
146_0 94.3222 55.9765
146_1 90.8503 55.9659
146_2 91.3654 55.8261
146_3 90.2731 56.0437
146_4 97.8378 56.4645
146_5 87.6053 57.1465
147_0 99.3266 57.2265
147_1 92.524 56.1003
147_2 88.2045 56.6402
147_3 94.6195 56.4361
147_4 91.0379 56.3516
147_5 91.0689 57.0747
148_0 85.7243 57.1721
148_1 81.6521 55.9485
148_2 92.1557 56.326
148_3 86.9405 56.5767
148_4 89.261 55.759
148_5 81.6069 56.8861
149_0 88.7142 57.292
149_1 92.29 55.8211
149_2 89.315 55.9109
149_3 94.8931 55.5337
149_4 83.062 55.4317
149_5 91.3572 56.9132
150_0 90.2046 56.1485
150_1 95.2738 54.9523
150_2 94.3305 55.7009
150_3 93.512 55.1869
150_4 93.8527 54.8042
150_5 90.5444 55.5811
151_0 73.868 55.2163
151_1 22.0601 54.0343
151_2 10.2981 54.0311
151_3 8.29847 53.1761
151_4 7.77015 52.7201
151_5 6.25509 54.4958
152_0 78.66 55.044
152_1 21.259 54.1009
152_2 9.30713 54.997
152_3 8.6873 54.5698
152_4 7.93164 53.6138
152_5 5.59677 54.2419
153_0 100.686 57.4679
153_1 96.7471 57.0324
153_2 106.14 56.5531
153_3 95.4567 56.1513
153_4 92.3689 57.3838
153_5 66.8726 61.2258
154_0 104.162 57.4377
154_1 111.555 56.4639
154_2 100.46 56.9124
154_3 100.863 56.1647
154_4 97.636 56.3733
154_5 102.236 57.059
155_0 99.1763 57.6369
155_1 98.0662 56.4734
155_2 104.487 56.8233
155_3 94.2055 56.3402
155_4 104.283 56.7467
155_5 93.8674 57.6082
156_0 111.671 56.7039
156_1 96.0335 56.2395
156_2 95.4236 56.5567
156_3 101.217 56.4462
156_4 94.6781 56.4184
156_5 95.2132 57.3091
157_0 88.8006 57.0918
157_1 87.1197 57.193
157_2 90.7884 59.8656
157_3 99.6606 56.0465
157_4 98.4708 55.4193
157_5 92.6881 59.4371
158_0 90.0784 56.6048
158_1 91.7405 57.4569
158_2 94.1278 57.2309
158_3 99.9517 56.0536
158_4 99.9147 55.3286
158_5 103.675 58.2382
159_0 6.14594 53.2663
159_1 7.5517 53.4881
159_2 8.38876 53.7125
159_3 9.68628 54.02
159_4 23.081 54.6133
159_5 76.3013 55.4806
160_0 3.80247 58.9787
160_1 5.37817 55.1836
160_2 6.13333 53.1616
160_3 7.0759 53.9149
160_4 12.8312 54.0108
160_5 37.885 54.2957
161_0 53.4732 55.657
161_1 57.0404 55.788
161_2 57.5246 56.0505
161_3 61.6231 55.3283
161_4 60.1495 56.2731
161_5 55.1003 57.4004
162_0 57.9141 56.5855
162_1 62.699 56.6432
162_2 62.8379 58.5514
162_3 61.5627 58.4775
162_4 60.9797 59.5154
162_5 36.2436 62.7439
163_0 61.1858 56.5607
163_1 64.4309 56.5705
163_2 61.023 57.6319
163_3 60.7588 57.8516
163_4 63.0758 56.8614
163_5 59.0044 58.6944
164_0 44.7803 54.3133
164_1 11.7945 54.1206
164_2 7.10822 53.8597
164_3 7.70107 53.2782
164_4 5.31891 53.976
164_5 3.67838 55.6099
165_0 61.2488 55.9919
165_1 72.8175 55.6215
165_2 61.7883 55.3742
165_3 61.5855 54.7552
165_4 60.1878 54.6997
165_5 52.4035 55.0993
166_0 65.2616 56.6435
166_1 70.1938 56.0218
166_2 64.9607 55.9106
166_3 67.367 55.9171
166_4 63.6987 55.9733
166_5 59.3673 56.2645
167_0 67.4618 56.9777
167_1 65.5111 56.7594
167_2 65.9241 57.2035
167_3 65.5237 56.8078
167_4 69.1038 56.636
167_5 59.7842 56.9805
168_0 72.7228 56.9677
168_1 72.8631 56.742
168_2 75.0816 56.7535
168_3 86.7286 56.7834
168_4 76.169 56.7354
168_5 67.9956 57.5802
169_0 73.0714 56.8493
169_1 78.62 56.563
169_2 76.1069 56.4827
169_3 88.4855 56.1657
169_4 72.2387 55.9992
169_5 72.0522 56.4154
170_0 74.2648 56.4324
170_1 75.4994 56.3001
170_2 73.0189 56.2573
170_3 68.9568 55.3198
170_4 68.7457 54.9158
170_5 59.0727 55.4725
171_0 48.9652 53.9962
171_1 13.1572 53.5812
171_2 6.59553 54.7467
171_3 6.89469 53.4089
171_4 5.24057 54.6855
171_5 3.46914 56.6094
172_0 69.5026 57.0085
172_1 72.5026 56.3697
172_2 69.3821 56.8086
172_3 73.561 56.5866
172_4 69.7313 56.466
172_5 63.0699 56.635
173_0 74.8076 56.6945
173_1 85.1048 56.4686
173_2 79.8833 56.8289
173_3 88.2806 56.7575
173_4 74.527 56.7734
173_5 67.6122 57.347
174_0 67.4313 55.0404
174_1 74.3571 55.0594
174_2 70.8614 55.2987
174_3 71.9357 55.3535
174_4 76.5644 55.5718
174_5 83.9624 56.3301
175_0 4.65767 58.021
175_1 5.02946 54.4876
175_2 6.41361 54.7766
175_3 6.88196 53.7234
175_4 13.2529 54.3398
175_5 59.3046 54.4194
176_0 3.4306 58.1045
176_1 4.81291 55.4947
176_2 5.93007 53.6455
176_3 5.91206 54.8155
176_4 13.0192 55.0405
176_5 49.8943 55.6658
177_0 62.6853 54.6842
177_1 73.7973 54.5569
177_2 68.4856 55.6361
177_3 72.8073 55.292
177_4 68.1569 56.3042
177_5 63.4166 56.6013
178_0 73.6431 57.1074
178_1 70.5113 56.6239
178_2 74.9804 56.1995
178_3 83.9819 56.4436
178_4 74.7376 56.3698
178_5 64.6046 57.0643
179_0 65.8261 57.7101
179_1 77.228 56.6862
179_2 63.8927 58.9083
179_3 74.4245 57.0576
179_4 69.3341 57.6032
179_5 66.0636 58.9224
180_0 70.4644 56.8217
180_1 65.3427 56.2979
180_2 75.5632 56.4571
180_3 71.7648 56.2577
180_4 76.6271 56.5533
180_5 82.5524 56.8777
181_0 74.5965 57.4885
181_1 74.7245 56.6919
181_2 72.9964 56.1447
181_3 79.2207 55.8381
181_4 63.3846 56.4685
181_5 63.6394 56.5011
182_0 71.0439 56.1745
182_1 77.3769 55.7809
182_2 91.884 55.6653
182_3 75.1048 54.6449
182_4 76.9265 54.5385
182_5 61.597 55.0685
183_0 58.4894 54.1077
183_1 14.1384 53.7264
183_2 6.11731 53.883
183_3 7.25128 53.6805
183_4 5.49576 54.4335
183_5 4.12246 56.6318
184_0 58.1165 54.1375
184_1 17.3107 54.1971
184_2 6.02878 54.4675
184_3 7.0573 54.4001
184_4 4.82909 55.4816
184_5 4.045 58.74
185_0 75.7878 56.8212
185_1 75.6996 57.1213
185_2 77.8775 57.381
185_3 75.1028 55.131
185_4 82.8829 55.7626
185_5 66.1069 56.3761
186_0 77.8215 57.248
186_1 95.3855 57.0309
186_2 77.6951 56.3894
186_3 80.9248 56.4151
186_4 73.0297 56.4881
186_5 73.4774 57.9616
187_0 79.082 57.5769
187_1 77.845 57.3349
187_2 84.6426 57.3596
187_3 77.5237 57.4058
187_4 84.4825 57.1002
187_5 73.6848 57.4859
188_0 69.1467 57.1735
188_1 94.5057 57.2339
188_2 80.7456 57.121
188_3 91.306 56.9944
188_4 76.8133 56.46
188_5 76.3617 58.5061
189_0 70.5932 56.8014
189_1 72.6093 56.8173
189_2 83.6656 56.0478
189_3 80.2195 56.6833
189_4 85.3151 56.4632
189_5 81.0389 57.2624
190_0 70.1569 54.876
190_1 82.3892 55.1212
190_2 91.0466 56.2211
190_3 96.9843 55.4183
190_4 94.6937 55.7214
190_5 70.3263 57.9733
191_0 4.35367 57.3786
191_1 5.19115 55.5701
191_2 6.28274 53.5257
191_3 6.4623 53.9785
191_4 15.7531 53.7702
191_5 57.9951 54.2127
  • Title: A&C_task 1.4
  • Author: Albert Cheung
  • Created at : 2024-09-10 15:03:23
  • Updated at : 2024-09-18 18:28:57
  • Link: https://www.albertc9.github.io/2024/09/10/2024A-Ctask4/
  • License: This work is licensed under CC BY-NC-SA 4.0.
On this page
A&C_task 1.4